ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Creating virtually indestructible, self healing circuits

Mihai AndreibyMihai Andrei
March 12, 2013
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Imagine if the chip in your phone of laptop could not only defend, but also repair itself on the fly, recovering from simple scratches or battery issues to total transistor failure. It may sound like science fiction, but it is exactly what a team from CalTech has done.

chips
A chip, after being “zapped”

The team working at the High-Speed Integrated Circuits laboratory in Caltech’s Division of Engineering and Applied Science, has demonstrated this self-healing capability in tiny power amplifiers. The amplifiers were actually so tiny that 76 of them could fit inside a single penny – along with everything they need to repair themselves. In order to test their experiment, researchers zapped the chips multiple times with a high power laser, and then observed as the chips automatically developed a work-around in a fraction of a second.

“It was incredible the first time the system kicked in and healed itself. It felt like we were witnessing the next step in the evolution of integrated circuits,” says Ali Hajimiri, the Thomas G. Myers Professor of Electrical Engineering at Caltech. “We had literally just as transistors, and it was able to recover to nearly its ideal performance.”

The team’s results will appear in the March issue of IEEE Transactions on Microwave Theory and Techniques.

chips 2

At the moment, chips are extremely vulnerable; a single mechanical or electric fault can render it useless, so the CalTech engineers wanted to give integrated-circuit chips a healing ability akin to that of our own immune system – something that is able to discover and treat the fault as soon as possible. The power amplifier they devised employs a multitude of robust, on-chip sensors that monitor temperature, current, voltage, and power. The information from the sensors feeds into a custom-made application-specific integrated-circuit (ASIC) unit on the same chip, a central processor that acts as the “brain” of the system. The “brain” then analyzes the amplifier’s overall performance, figuring out where it has faulted and needs to be fixed. What’s interesting is that this mechanism does not operate on algorithms that know how to respond to every possible scenario, but rather draws conclusions based on the aggregate response of the sensors.

“You tell the chip the results you want and let it figure out how to produce those results,” says Steven Bowers, a graduate student in Hajimiri’s lab and lead author of the new paper. “The challenge is that there are more than 100,000 transistors on each chip. We don’t know all of the different things that might go wrong, and we don’t need to. We have designed the system in a general enough way that it finds the optimum state for all of the actuators in any situation without external intervention.”

They have described four main categories of damage that chips suffer: static variation that is a product of variation across components, long term ageing, short-term variations that are induced by environmental conditions such as changes in load, temperature, and differences in the supply voltage, and accidental or intentional mechanical damage that causes a destruction of the circuits.

The implications of this project are absolutely huge.

RelatedPosts

China Just Made the World’s Fastest Transistor and It Is Not Made of Silicon
Bone marrow-on-a-chip could remove bone marrow animal testing
Physicists create previously thought impossible super photons
Picture perfect: quick, efficient chip eliminates common flaws in amateur photographs

“Bringing this type of electronic immune system to integrated-circuit chips opens up a world of possibilities,” says Hajimiri. “It is truly a shift in the way we view circuits and their ability to operate independently. They can now both diagnose and fix their own problems without any human intervention, moving one step closer to indestructible circuits.”

Tags: chipself repairing

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

China Just Made the World’s Fastest Transistor and It Is Not Made of Silicon

byTibi Puiu
2 months ago
Future

Researchers build advanced microprocessor out of carbon nanotubes

byFermin Koop
6 years ago
Credit: Massachusetts Institute of Technology.
Biology

Tree-on-a-chip mimics passive pumping mechanism found in plants and trees

byTibi Puiu
8 years ago
Image bia pixabay
Science

By 2040 our computers will use more power than we can produce

byAlexandru Micu
9 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.