Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Research → Studies

Self-healing circuits restore electrical conductivity in an instant

Tibi Puiu by Tibi Puiu
January 11, 2012
in Research, Science, Studies, Technology

Self-Healing Circuit Microcapsules full of liquid metal sit atop a gold circuit. When the circuit is broken, the microcapsules rupture, filling in the crack and restoring the circuit. (c) Scott White/University of Illinois
Self-Healing Circuit Microcapsules full of liquid metal sit atop a gold circuit. When the circuit is broken, the microcapsules rupture, filling in the crack and restoring the circuit. (c) Scott White/University of Illinois

In the age where consumer electronic are purposely built with short lived life cycles, there might seem to be no interest for manufactures to invest in technology that enhances reliability. Sophisticated military controls or aerospace on-board circuitry are a different story though from your counter toaster – the kind of applications that yearn for working electronics that can last with confidence. With this forefront of technology in mind, scientists from University of Illinois have developed a “self-regenerating” circuit system that fills in cracks in a circuit and restores electrical conductivity within milliseconds.

Extraordinary advances in manufacturing technology and miniaturization has lead to tremendous computing power packed into tiny chips – basically the same chip density has remained in place for years and years, while its computing power doubled ever year. This, however, comes with a great deal of stress to the circuit, mostly fluctuating temperature cycles, which can produce failures, thus shutting down the circuit and, in consequence, the whole device. Repairing such an issue usually entails replacing components or the whole system all together if short-circuitry leads to propagated damage.

“In general, there’s not much avenue for manual repair,” Nancy Sottos, co-author of the papar, said. “Sometimes you just can’t get to the inside. In a multilayer integrated circuit, or battery, there’s no opening it up. Normally you just replace the whole chip or battery.”

The Illinois engineers’ system is consisted of  tiny microcapsules, just 10 microns in diameter, on top of a gold line functioning as a circuit. Whenever a tiny crack appears in the conductive material, the microcapsules break open and release the liquid contained inside, which fills in the gaps and restores electrical flow. During this operating, the circuit is inactive, but only for a mere miliseconds. Remarkably,  researchers demonstrated that 90 percent of their samples healed to 99 percent of original conductivity, even with a small amount of microcapsules.

“It simplifies the system,” said chemistry professor Jeffrey Moore, a co-author of the paper. “Rather than having to build in redundancies or to build in a sensory diagnostics system, this material is designed to take care of the problem itself.”

What’s remarkable about this system is not only how it takes care of this problem, but also where. The self-healing system is autonomous and localized, as the microcapsules only act upon the singular damaged points of the circuit, with no need of intervention for manual repair or diagnosis.

“In an aircraft, especially a defense-based aircraft, there are miles and miles of conductive wire,” Sottos said. “You don’t often know where the break occurs. The autonomous part is nice — it knows where it broke, even if we don’t.

The paper, titled Autonomic Restoration of Electrical Conductivity, was published in the recent edition of Advanced Materials. 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Accidental exposure of crystal to light increases electrical conductivity 400 fold
  2. Creating virtually indestructible, self healing circuits
  3. At a few million atmospheric pressures, Hydrogen nears metal conductivity
  4. Graphene: unlimited heat conductivity
  5. Self-healing textiles means you don’t have to throw away your torn jeans — just add water
Tags: conductivityelectronics

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW