ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Flexible, high speed electronics built using nanocrystals might open new doorways

Tibi PuiubyTibi Puiu
November 29, 2012
in Physics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Nanocrystals have always interested researchers since their electrical and thermodynamic properties show strong size dependence, which could potentially lead to some highly efficient new technologies. Scientists at University of Pennsylvania recently showed that nanocrystals of semiconductor cadmium selenide can be easily printed or layered on-top of flexible plastics to form electronic devices. This could potentially open up a slew of new technological possibilities.

Flexible circuit coated with cadmium selenide nanocrystals manufactured in the Kagan lab (c) David Kim and Yuming Lai/University of Pennsylvania.
Flexible circuit coated with cadmium selenide nanocrystals manufactured in the Kagan lab (c) David Kim and Yuming Lai/University of Pennsylvania.

Your typical electronic circuit, which you can find inside just about any household electronics from remote controls to tablets, is layered on-top of a rigid board, 99% of the time a silicon wafer. By devising flexible electronics, a new range of applications might be opened, from smart clothing, to more agile robots. Finding the right technological mix between material availability and manufacturing cost is serious impediment, however.

“We have a performance benchmark in amorphous silicon, which is the material that runs the display in your laptop, among other devices,” said professor Cherie Kagan.

“Here, we show that these cadmium selenide nanocrystal devices can move electrons 22 times faster than in amorphous silicon.”

That’s fast, and not only that, they’re also easier to store and use. morphous silicon uses a process that operates at several hundred degrees; cadmium selenide nanocrystals can be deposited at room temperature and annealed at mild temperature. How did the researchers reach such incredible performances, though?

Well, the scientists took extra care when building their nanocrystals in order to ensure maximum compatibility with the binding flexible plastic surface. For one thing, the researchers employed special ligands – chemical chains that extend from the nanocrystals’ surfaces and helps facilitate conductivity as they are packed together into a film.

“There have been a lot of electron transport studies on cadmium selenide, but until recently we haven’t been able to get good performance out of them,” Kim said. “The new aspect of our research was that we used ligands that we can translate very easily onto the flexible plastic; other ligands are so caustic that the plastic actually melts.”

Since the nanocrystals are typically produced as an ink-like liquid, they can be easily stored through various methods, and most importantly they can be applied to surfaces extremely easily. For instance, the researchers used a simple stencil to etch small channels of conducting gold, which make the make the electrical connections to upper levels that would form the circuit. On top of this, an insulating aluminum oxide layer was introduced and again on top of this a 30-nanometer layer of nanocrystals was coated. Finally, in the last step electrodes on the top level were deposited through shadow masks. Using this technique, the researchers built three devices: an inverter, an amplifier and a ring oscillator.

“The more complex circuits are like buildings with multiple floors,” Kagan said. “The gold acts like staircases that the electrons can use to travel between those floors.”

“An inverter is the fundamental building block for more complex circuits,” Lai said. “We can also show amplifiers, which amplify the signal amplitude in analog circuits, and ring oscillators, where ‘on’ and ‘off’ signals are properly propagating over multiple stages in digital circuits.”

“And all of these circuits operate with a couple of volts,” Kagan said. “If you want electronics for portable devices that are going to work with batteries, they have to operate at low voltage or they won’t be useful.”

Findings were detailed in the journal Nature Communications.

via Kurzweil AI

RelatedPosts

Future devices will rewire themselves thanks to nanomaterial tech
Scientists have created a material that can think under stress
Paper-thin device turns touch into electricity, flags into loudspeakers, bracelets into microphones
Device harvests energy from walking to charge your mobile and wearable electronics
Tags: electronicsligandnanocrystals

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Chemistry

Sodium-ion hybrid batteries could recharge EVs in seconds

byTibi Puiu
1 year ago
Electronics

Scientists have created a material that can think under stress

byRupendra Brahambhatt
3 years ago
Image credits: Jorge Ramirez.
Inventions

What are sensors, how they work, and why they’re everywhere

byMihai Andrei
4 years ago
News

Atom-thick heat shield could make smartphones even thinner

byTibi Puiu
6 years ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025 - Updated on May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.