Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Could we use plastic to end the ocean’s plastic problem? A new paper says: “Yes!”

I really like this idea.

Alexandru Micu by Alexandru Micu
November 2, 2021
in Environment, Environmental Issues, News, Oceanography, Science

The world’s oceans have a plastic problem. However, a bold new approach from researchers at several institutions says that the same plastic could also be the solution.

Image via Pixabay.

The team, with members from Worcester Polytechnic Institute, Woods Hole Oceanographic Institution, and Harvard University, believes that the plastic clogging up our oceans can be used as fuel for ships that work to clean the oceans of plastic. In a new study, they describe the process through which plastic can be converted to ship fuel in order to support such a scheme.

If applied, this approach would allow ships to operate continuously to clean the oceans.

Putting it to good use

“Plastic waste accumulating in the world’s oceans forms massive ‘plastic islands’ in the oceanic gyres. Removing [it] offers an opportunity to restore our oceans to a more pristine state,” the authors explain. “To clean the gyres, ships must collect and store the plastic before transporting it to port, often thousands of kilometers away. Instead, ocean plastic waste can be converted into fuel shipboard, for example, using hydrothermal liquefaction”.

Millions of tons of plastic find their way into the ocean year after year. The smaller fragments disperse, while larger pieces of plastic clump together forming plastic ‘islands’. These tend to end up in ocean gyres, large systems of ocean currents generated by winds and the rotation of the planet that ‘spin’ in place.

Plastic waste poses a very real threat to marine life. As such, efforts to clean up the seas have been repeatedly attempted over time. Ships are sent out to garbage patches where they collect as much plastic as they can hold and bring it back to port for processing. Although this approach works, it’s by no means ideal. Going back and forth between these patches and port areas takes time, fuel, and slows down the efforts overall.

The authors of this study propose using the plastic itself as fuel for the ships and machines used to process the waste. This could have a powerful dual benefit. It would dramatically improve the efficiency of clean-up efforts by slashing downtime, while also being a greener option overall, as it would reduce emissions associated with fuel use (and ships can be very polluting).

Plastic waste can be converted to a type of oil via a process known as hydrothermal liquefaction (HTL), the authors explain. During HTL, plastic is heated to around 300–550 degrees Celsius (572-1022 Fahrenheit) at high pressure — 250 to 300 times the standard atmospheric pressure.

According to their estimates, one ship equipped with an HTL converter could produce enough oil to be self-sustainable (i.e. to keep both the ship and the converter operational). They envision a system where permanent collection booms would be stationed at multiple sites around a large garbage patch and maintain a steady supply of plastic for the ships to convert.

Such an approach is not without its problems. The HTL process itself, as well as the burning of the oil it produces, would obviously release carbon dioxide. That being said, the authors explain that it would still be a lower quantity than what a ship burning conventional fuel would emit during a clean-up mission. There would still be practical constraints on how long a mission could carry on for; the HTL process would produce a relatively small quantity of solid waste that would eventually need to be returned to port, and there’s only so much time a crew’s supplies and sanity can last for on the open seas. However, it would reduce the need for round trips down to once every few months or so, which would also be fueled by the oil produced by the converters.

I personally like the idea of such an approach. It makes practical sense, and I’m sold on the idea of turning a problem into an opportunity or solution. So far the idea is still in its theoretical stage, but it definitely has promise. Fingers crossed that we’ll see it implemented in the not-so-distant future.

The paper “Thermodynamic feasibility of shipboard conversion of marine plastics to blue diesel for self-powered ocean cleanup” has been published in the journal PNAS.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Full extent of plastic in world’s oceans quantified: over 5 trillions of pieces of plastic
  2. Our plastic problem is only getting worse. At this rate, more than twice as much plastic will enter the oceans by 2040
  3. It’s official: there’s more plastic in the oceans than ever before
  4. Worth more in the oceans: fish save billions of dollars each year by storing CO2 in the oceans
  5. Would you be willing to take an electric shock in the name of curiosity? Science says yes, several actually
Tags: clean-upoceanplasticplastic waste

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW