Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

This computer clocks uses water droplets, manipulating information and matter at the same time

Computers and water don't mix well, but that didn't stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don't expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet - not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Tibi Puiu by Tibi Puiu
June 12, 2015
in News, Physics

Computers and water don’t mix well, but that didn’t stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don’t expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet – not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Water computer

 Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics
Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics

As you can imagine, making a computer clock based on a fluid is no easy task. Prakash realized that one way to manipulate the flow is through an external magnetic field. He designed a series of T and I-shaped tiny pieces of iron and strategically placed them on a glass slide. Then another glass is placed on top with a layer of oil sandwiched in between. Water droplets infused with magnetic nanoparticles are then carefully infused into the system. Electromagnetic coils placed around the machine manipulate and direct the droplets, very similarly to how this ferrofluid artistic rendering work.

GIF: coils and droplets racing inside the grooves. YouTube
GIF: coils and droplets racing inside the grooves. YouTube

Depending on how they placed the metal shapes, the droplets would travel along a distinct pattern. Once the magnetic field is turned on, each rotation of the field is counted as one clock cycle. With each cycle, every drop marched exactly one step forward, as recorded in the video below.

The design of the iron tracks is essential, as Physics World reports:

“If the base was just a sheet of iron with no tracks, the droplets would travel around in circles, following the energy minima created by the field. However, by carefully designing the iron tracks and incorporating breaks at the right places, the researchers can create a “ratchet” effect whereby every complete rotation causes a droplet to move into an adjacent energy minimum. Therefore, instead of travelling in circles, a droplet moves in a specific direction through the circuit. Furthermore, by creating two tracks that are mirror images of each other, two droplets will rotate in opposite directions in response to the same field.”

Because of a combination of hydrodynamic and magnetic forces, the droplets repel each other. This is a good thing, since it keeps them separated and allows for the water-based equivalent of a digital transistor. If the droplet is in a specific location the value “1” is given, “0” if absent. Basically, this is the basis for a droplet logic gate. Since the machine works with fluids, virtually any kind of fluid chemical can be introduced into the computer. This way, scientists can sort and mix chemicals on the fly, while also performing computing operations. But the ultimate purpose isn’t to superseed a digital processor. It’s about much more than that – the “algorithmic manipulation of matter”, which enables enable us to “learn to manipulate matter faster… in a fundamentally new way.” Findings appeared in Nature Physics.

“Imagine, when you run a set of computations wherein not only information is processed but also the physical matter is algorithmically manipulated. We have just made this possible at the mesoscale,” Prakash said.

Next, Prakash and colleagues are concentrating on scaling down the design.

 

 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. A computer made from water droplets
  2. The key to high-temperature superconductivity might lie in manipulating electron spin
  3. Scientists image levitating water droplets on very hot plates
  4. Most powerful X-ray machine blasts water droplets for science
  5. Water-repelling surface makes dew droplets so small, they’re practically invisible
Tags: computercpuwater

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW