ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

New catalyst nanoparticle turns plastic waste into high-quality hydrocarbons for oils, waxes, cosmetics

Sick of plastic waste? So are these researchers.

Alexandru MicubyAlexandru Micu
October 23, 2019
in Chemistry, Environment, News, Physics, Pollution, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research is looking to give plastic waste a new lease on life as quality motor oil, lubricants, detergents, or even cosmetics.

Electron micrograph of the platinum nanoparticles distributed onto perovskite nanocubes.
Image credits Northwestern University / Argonne National Laboratory / Ames Laboratory.

Let’s not beat around the bush: humanity has a plastic problem. We’re making a lot of it and we’re throwing most away after a single use. Most recycling methods available today can take some of this waste out of the environment, but they also result in cheap, lower-quality plastics than the ones going into the process, which doesn’t make them very lucrative.

In an effort to find a better way of repurposing the mounds of plastic in the wild, a group of U.S. researchers has developed a new catalyst to turn them into high-quality liquid hydrocarbons. These materials can serve as the base for other products or can be useful as-is.

Liquidizing the assets

“Our team is delighted to have discovered this new technology that will help us get ahead of the mounting issue of plastic waste accumulation,” said Kenneth Poeppelmeier, a paper co-author from Northwestern University.

“Our findings have broad implications for developing a future in which we can continue to benefit from plastic materials, but do so in a way that is sustainable and less harmful to the environment and potentially human health.”

The upcycling method relies on a new catalyst the team developed. It is constructed from perovskite nanocubes studded with platinum nanoparticles. Perovskite was chosen because it remains stable under high temperatures and pressures, and is also a very good material for energy conversion (perovskite is the main material used for several types of solar panels). To deposit nanoparticles onto the nanocubes, the team used atomic layer deposition, a technique developed at Argonne National Laboratory that allows precise control of nanoparticles.

Under moderate pressure and temperature conditions, the catalyst breaks down plastics into high-quality liquid hydrocarbons. The team explains that these substances could be used in motor oil, lubricants, or waxes, or further processed to make ingredients for detergents and cosmetics.

It’s the first plastic recycling or upcycling method that is able to reach this end product. Commercially-available catalysts today generate lower quality products with many short hydrocarbons, which are of limited usefulness. Classic melt-and-reprocess recycling results lower-value plastic that is not as structurally strong as the original material.

Plastics are so resilient because on an atomic level, they have a lot of carbon atoms linked to other carbon atoms — and this chemical bond is very strong (has a lot of energy). As a rule of thumb, it takes a greater amount of energy than that contained in a bond to break it. There aren’t many things in nature that can completely break down plastic, but there are enough sources of energy to degrade it into microplastics. Given that we produce around 380 million tons of plastic yearly, and that over 75% is thrown away after one use (ending up in waterways and the ocean), it adds up to a lot of microplastics.

RelatedPosts

Four leading brands are responsible for 500,000 tons of plastic pollution per year
‘Terminator’ rubber tires made from industrial waste can repair themselves on the go
In the stone-age people recycled flint on purpose to produce precision blades
Plastic is “everywhere” in the ocean, including its deepest trenches — “There’s no good aspect to this,” researchers say

“There are certainly things we can do as a society to reduce consumption of plastics in some cases,” said Aaron D. Sadow, a scientist in the Division of Chemical and Biological Sciences at Ames Laboratory and the paper’s co-lead author. “But there will always be instances where plastics are difficult to replace, so we really want to see what we can do to find value in the waste.”

The team says that their approach produces far less waste than comparable processes, and virtually no emissions compared to recycling methods that involve melting plastic.

The paper “Upcycling Single-Use Polyethylene into High-Quality Liquid Products” has been published in the journal ACS Central Science.

Tags: catalysthydrocarbonperovskiteplasticrecycling

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

byMihai Andrei
4 weeks ago
Environment

Lego, the World’s Largest (and Smallest) Tire Manufacturer, Makes a Major Eco-Friendly Upgrade

byRupendra Brahambhatt
2 months ago
Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
2 months ago
Animals

Birds are building nests out of decades-old plastic trash and it’s a record of the Anthropocene

byMihai Andrei
2 months ago

Recent news

Barbie’s Feet Have Something to Say About Modern Womanhood

May 15, 2025

The Best Archaeopteryx Fossil Ever Found Just Showed It Could Fly

May 14, 2025

Earliest Reptile Footprints Found By Amateur Paleontologist in 355-Million-Year-Old Rock Push Back the Dawn of Land Animals

May 14, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.