ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

New, more precise method to measure exoplanet mass

Tibi PuiubyTibi Puiu
December 20, 2013 - Updated on January 6, 2014
in Astronomy, News, Physics, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

James Webb spots ‘baby’ quasars from cosmic dark ages, rewriting story of black holes
James Webb Space Telescope highlights Uranus’s mysterious rings
Scientists find extreme exoplanet raining with iron
NASA’s 2012 budget – $18.7 Billion

In the past two decades alone, some 900 exoplanets – planets outside our solar system – have been identified, with some 2300 more in queue. Most of these were confirmed using the now discontinued Kepler space telescope. It’s remarkable how much scientists can find out about a distant plant, hundreds of light years away, simply by studying how light emitted by its parent star is manipulated (absorbed, reflected, tugged). For instance, researchers can establish properties like mass, planet and atmosphere composition, surface temperature and more.

As one can imagine, these readings are far from being extremely accurate. A team of researchers at MIT recently made a significant contribution to exoplanet hunting after they demonstrated a new method for assessing exoplanet mass, which they claim should be more accurate. The method is particularly useful for establishing the mass of smaller planets orbiting dimmer stars, something that currently renders skewed results using other methods. Having an accurate reading of a planet’s mass is extremely important since mass influences all the other parameters used to characterize a planet.

“The reason is that the mass of a planet is connected to its internal and atmospheric structure and it affects its cooling, its plate tectonics, magnetic field generation, outgassing, and atmospheric escape,” IT graduate student Julien de Wit said. “Understanding a planet is like dealing with a huge puzzle where knowing the mass is one of the corner pieces, which you really need to get started.”

A new way to measure mass

Artist impression of HD 189733 b and its parent star. Photo: ESA, NASA, M. Kornmesser (ESA/Hubble), and STScI
Artist impression of HD 189733 b and its parent star. Photo: ESA, NASA, M. Kornmesser (ESA/Hubble), and STScI

Typically, the mass of a planet is calculated by studying radial velocity or a measure of how intensely a planets pulls on its star. This method is useful for establishing how many planets orbit a certain star and how large these are, however it’s only accurate in certain conditions, namely for massive planets orbiting around bright star.

The method developed by de Wit and colleagues at MIT, alled MassSpec, employs transmission spectroscopy instead. This works by measuring light from a star passing through an exoplanet’s atmosphere. A key property called pressure-scale height – how quickly the atmospheric pressure changes with altitude – is established. Then, using this data the MIT researchers can determine the planet’s gravity and, in term, mass.

A hellish world

To test the accuracy of the method, the MIT researchers looked at a gas giant HD 189733 b – a huge, Jupiter-like planet in terms of composition which orbits its parent star in only 2.2-days – previously analyzed using conventional methods. Since its a massive planet around a very bright star, measuring the exoplanet’s properties is relatively easy and accurate. After comparing the data coming from the MIT method with those from conventional methods, the results were found to be consisting.

Following the 2018 deployment of the James Webb Telescope, a multi-billion project, much powerful than Kepler, that will peer through dim and small stars, like those classed as M dwarf stars, the MIT method is sure to become truly useful. Considering there are billions of planets in the Milky Way, a new age of astronomic breakthroughs and discoveries may come out.

Tags: exoplanetJames Webb Space TelescopeKepler telescope

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
4 months ago
This artist’s visualisation of WASP-127b, a giant gas planet located about 520 light-years from Earth, shows its newly discovered supersonic jet winds that move around the planet’s equator. With a speed of 9 km per second (33 000 km/h), this is the fastest jetstream of its kind ever measured in the Universe. By tracking the speed of molecules in the atmosphere with the CRIRES+ instrument on ESO’s Very Large Telescope, researchers found that one side of the planet’s atmosphere is moving towards us and the other away from us. This indicates that there is a powerful wind current going around the planet. 
News

A Gas Giant 500 Light-Years Away Has the Fastest Winds Ever Recorded: A Staggering 33,000 km/h

byTibi Puiu
5 months ago
Astronomy

Astronomers thought mini-Neptunes had atmospheres with water or hydrogen. This one has neither

byMihai Andrei
5 months ago
Science

James Webb Telescope Uses Cosmic “Magnifying glass” to Detect Stars 6.5 Billion Light-Years Away

byJordan Strickler
5 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.