ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Who’s got the most efficient muscle engine : the tuna or the grey whale?

Tibi PuiubyTibi Puiu
May 15, 2014
in Animals, Biology, News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Ancient whale fossil show how the mammals moved to life in the ocean
The UK may soon get its first cryogenic energy battery
‘Hybrid’ nuclear plants could cut carbon emissions
Earlier this month, California broke yet another green record using over 67% renewable power
whale
Photo: Wikimedia Commons

The humongous grey whale and the skipjack tuna, though of contradicting sizes, both employ similar propelling mechanisms through water. Pound per pound, however, which of the two animals is most energy efficient? Engineers at Northwestern University have developed a new metric for analyzing such problems and found that the two marine animals are almost just as energy efficient despite the great difference in mass. This newly developed metric, or standard, can be applied to almost any animal, be it marine, terrestrial or flying, as well as anthropocentric machinery, like transportation vehicles.  This way, the researchers note, they can understand where a car starts becoming less efficient once it crosses a certain weight barrier and thus design better vehicles.

Whale or tuna: whose muscles are more efficient?

“Our study is about how energy flow changes with size or mass,” said Neelesh A. Patankar, who led the research. “This is good insight to have in the transportation field, whether you are working with cars, ships or planes. What are the limits of how good you can become? Our metric can be used to determine the point where an animal or a vehicle would function most efficiently. We want to know the sweet spot.”

A truck needs more fuel compared to a small car to cover the same distance – everyone knows this this. Likewise, the husky whale consumes more energy to travel the same distance underwater as a tuna. Does it mean that the muscular “engine” propelling the whale is less efficient compared to the tuna or is the higher fuel consumption of the whale an unavoidable consequence of the laws of physics? The whale’s higher fuel consumption is unavoidable, the researchers report, and the engine efficiencies of the whale and tuna are similar.

To reach this conclusion, Patankar and team developed an energy consumption coefficient similarly to the drag coefficient employed in aerospace, which takes into account metabolic rate, muscle mass and physics. The metric was then applied to data of energy consumption by thousands of species of swimming and flying animals, ranging from tiny larval zebrafish to massive mammalian swimmers such as dolphins and whales.

The new metric successfully collapsed energy consumption data on to a single trend with respect to mass — mass that varied almost a trillion times from the smallest to the largest animal. The key idea was not to plot the energy consumption itself versus mass but instead to plot energy consumption normalized by an appropriate scale that accounts for the size of the animal.

“The study helps quench my curiosity about how nature works, but, as an engineer, I also want to see utility,” Patankar said. “The energy consumption coefficient can be an important tool in designing self-propelled underwater vehicles as well as aerial vehicles. And, as a driver, I also would like to know how efficient my car is, information currently not available to me.”

The new Northwestern metric for efficiency that enabled this comparison could be extremely useful in designing underwater vehicles — such as those used to study fragile coral reefs, repair damaged deep-sea oil rigs or investigate sunken ships — to be as efficient and agile as a real fish. Of course, motor vehicles design could also benefit from the findings reported in the journal Proceedings of the National Academy of Sciences (PNAS).

 

Tags: energyengineeringtunawhale

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
2 days ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
4 days ago
Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
4 weeks ago
News

We Could One Day Power a Galactic Civilization with Spinning Black Holes

byTibi Puiu
2 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.