ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Milky Way Has Mysterious Lopsided Cloud Of Antimatter: Clue To Origin Of Antimatter

Mihai AndreibyMihai Andrei
January 14, 2008 - Updated on June 11, 2023
in Physics, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Rare supernova leftovers might have produced the youngest black hole in the Milky Way
Antimatter excess in space hints of tangible evidence of dark matter
Physicists observe the light spectrum of antimatter for the first time
Scientists make most precise measurements of antimatter — but only deepen mystery

dark matter
Antimatter is a fascinating story; basically nobody knows for sure what it could do and scientists have been trying to understand it for years. The artificial production of atoms of antimatter (specifically antihydrogen) first became a reality in the early 1990s. For example an atom of antihydrogen is composed of a negatively-charged antiproton being orbited by a positively-charged positron. But still the clue that our old Milky Way galaxy gave us is relevant and important.

The thing is that the proton traveling at relativistic speeds and passing close to the nucleus of an atom has the potential to force the creation of an electron-positron pair. The shape of the mysterious cloud of antimatter in the central regions of the Milky Way has been revealed by ESA’s orbiting gamma-ray observatory Integral.

These observations almost eliminated the idea that the chances that the antimatter is coming from the annihilation or decay of astronomical dark matter. Georg Weidenspointner at the Max Planck Institute for Extraterrestrial Physics and an international team of astronomers made the discovery using four-years-worth of data from Integral.

“Simple estimates suggest that about half and possibly all of the antimatter is coming from the X-ray binaries,” says Weidenspointner. The other half could be coming from a similar process around the galaxy’s central black hole and the various exploding stars there. He points out that the lopsided distribution of hard LMXBs is unexpected, as stars are distributed more or less evenly around the galaxy. More investigations are needed to determine whether the observed distribution is real.

Tags: antimattermilky way galaxy

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
13 hours ago
News

This Mind-Blowing Antimatter Rocket Could Take Us to the Stars Within a Lifetime. But How Long Until We Get One?

byTibi Puiu
3 months ago
News

Mysterious antimatter detected on ISS could be generated by cosmic “fireballs”

byTibi Puiu
10 months ago
An artist's impression of a collision between the Milky Way and a smaller dwarf galaxy, such as that which occurred about eight to 10 billion years agoV. Belokurov (Cambridge, UK) based on an image by ESO/Juan Carlos Muñoz)
News

A dwarf galaxy may have collided with the Milky Way 3 billion years ago

byRob Lea
5 years ago

Recent news

This beautiful rock holds evidence of tsunamis from 115 million years ago

May 20, 2025

New Version of LSD Boosts Brain Plasticity Without the Psychedelic Trip

May 20, 2025

The World’s First Mass-Produced Flying Car Is Here and It Costs $1 Million

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.