Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science Physics

People find out that CERN trapped antimatter for over 15 minutes

Mihai Andrei by Mihai Andrei
June 6, 2011
in Physics
Reading Time: 4 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit

It always baffles me to see how science news propagate; it seems whenever a study or a report is published, there are two waves of acknowledgement: the first one, science sites and magazines write about it, and the second one, the supermassive one, where the media picks it up. This is exactly the case here.

News and antinews

[Warning: there may be a little ranting in this part, so if you’re not interested in it, just jump to the next subtitle]

CERN announced that they held antimatter for approximately 1000 seconds over a month a go – I wrote about the antimatter trap here. Of course, I wasn’t the only one to do it – respectable sites, especially those who take the news directly from the source were all over it. But it wasn’t until yesterday that the study was picked up by major news agencies, which lead to the whole internet writing about how antihydrogen was trapped and all that. It saddens me to see even some of the big sites and magazines (be they science or popular science) have fallen into the trap of the easier path and pick up news from agencies instead of the real source, in this case, CERN.

ADVERTISEMENT

The reason why it got picked up yesterday is that it was only then that the full study was officially published in Nature Physics (the study is free by the way, so you should really look at it if you are interested). So it would make perfect sense to go into additional details, at a higher scientific and even technical level, given the fact that you have a full study and not a report published by CERN. But this is not what happened – as you have probably noticed, if you are interested in science, the internet is full of general articles about antimatter, how it was trapped for the first time for such a long period, giving the impression that this happened just now.

Matter and antimatter

Antimatter raises probably the biggest unanswered questions in the world of physics; it is believed that in the first moments of the universe, both matter and antimatter existed in a brotherly fashion. Well, brotherly isn’t the word here, since they annihilate each other whenever they meet, but they existed in equal or at least comparable amounts. But look around you; there’s all this matter you see, and absolutely no antimatter, so where did it go ? This is the major question scientists are trying to answer, and of course, if you want to study something, you first have to ‘see’ it – in one way or another.

ADVERTISEMENT
Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

But capturing antimatter is extremely hard; up until this development, the record for capturing antimatter was only a few fractions of a second, so it’s easy to understand why 1000 seconds of antimatter is not something big – but something huge. Actually, on April 26, CERN announced that when fully operational, their facilities are capable of producing 10^7 antiprotons per minute. Thay may seem like an enormous amount, but it’s not; operating at this speed, it would take them 100 billion years to produce one gram of antiprotons. The costs are also huge: according to CERN, it cost over a few hundred million Swiss francs to produce about 1 billionth of a gram; in case you’re wondering a Swiss franc is more than one dollar.

Still, having antimatter at your disposal, even at these amazing efforts is worth it; in several minutes, you can study its properties, especially something called the charge-parity-time reversal (CPT) symmetry. In layman terms, what CPT says is that if you have a particle moving in one direction, and an antiparticle moving in the opposite direction in a mirror universe, they would be indistinguishable. So basically matter and antimatter have the same spectral profile. This is the reason why researchers have speculated that since our universe prefers matter over antimatter, it also prefers time moving forward and not backward.

Another thing which researchers are especially interested in are the gravitational effects; what gravitational effects does antimatter have ? Is it just like matter, totally different, or, as some speculate, does it produce antigravity ? Physicists hope to be able to trap antimatter again and apply extremely low temperatures to it, to better understand its gravitational properties.

Tags: antihydrogenantimatterantiprotonscernlarge hadron colliderLHC
ShareTweetShare
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.