ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Technology → Inventions

Who invented the microwave oven?

WWII radar technology unexpectedly led to the invention of the common microwave oven.

Tibi PuiubyTibi Puiu
September 3, 2018 - Updated on May 31, 2023
in Inventions
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit

Sometimes, weapons and other projects pushed by the urgency of war have been converted into civilian technology. Such is the case of nuclear power plants, the internet, but also radar tech, which unexpectedly and inadvertently led to the invention of the microwave oven — one of the most widely used home appliances in the world.

Radar and microwaves: how the microwave oven was invented

Before and throughout the war, British ground radar technology was rather well matched by German scientific advances. Here, mid-war ground radar station FuMO 214 Würzburg-Riese [US National Archives]
Before and throughout the war, British ground radar technology was rather well-matched by German scientific advances. Here, mid-war ground radar station FuMO 214 Würzburg-Riese. Credit: US National Archives.

In 1920, a young physicist called Albert Hull, who worked at the General Electric Research Laboratory in Schenectady, New York, invented the magnetron tube — a coaxial cylindrical anode and cathode with an axial magnetic field produced by an external coil. It was a magnet that controlled electrical current inside an evacuated electron tube, or vacuum tube.

Hull believed the magnetron would be successful as an electrical converter, but 20 years later it would prove most useful in telecommunications. During WWII, the British were looking to devise a higher-frequency radar technology for the war effort. A radar locates distant objects by bouncing radio waves off of them and then analyzing the reflections. Locating the enemy from afar was crucial to the war effort.

Engineers planned to build a new radar system based on electromagnetic waves in the microwave region of the radio spectrum. Such a system would require smaller antennas and detect smaller objects than lower-frequency, longer-wavelength radars. 

Microwaves correspond to a region in the EM spectrum defined by having wavelengths between approximately 1 meter and 1 millimeter, corresponding to frequencies between 300 MHz (Mega = 106 Hz = 106 sec-1) and 300 GHz (Giga = 109 Hz). Today, microwaves are often used to transmit data from satellites in space to radio dishes on Earth, but back then building a high-power source of microwave radiation proved to be a challenge.

In 1940, John Turton Randall and Harry Boot, two young physicists working in England at the University of Birmingham, found a way to modify Hull’s original magnetron tube to make it produce microwaves with high enough power. The improved design was called a cavity magnetron tube, and shortly after its first test runs it became the heart of the Allies’ advanced radar systems that were so essential — perhaps decisive — to the overall Allied victory in World War II.

From spotting Luftwaffe fighters to popping popcorn

During the war, one of the leading suppliers of cavity magnetron tubes was the Massachusetts-based Raytheon Manufacturing Company. Working there was a self-taught engineer by the name of Percy Spencer. One day, in 1946, while testing a new magnetron unit, Spencer felt a strange tingling sensation and suddenly noticed that the candy bar in his pocket had melted. He then placed popcorn, eggs, and other foods in front of the device and they all cooked — actually the egg exploded all over his friend’s face!

RelatedPosts

Microwaving water really isn’t the same as heating it
Europe’s microwave ovens release as much CO2 as 6.8 million cars
Scientists cloak 3D object in microwave spectrum
Radar satellites could show areas where sinkholes are forming, predicting the collapse before it happens

Shortly after the accidental discovery, engineers at Raytheon went to work on Spencer’s new idea, developing and refining it to be of practical use. A year later, the first commercial product hit the market. After a few decades of turmoil, myths and legends regarding microwave use, public demand began to swell with acceptance until the sales of microwave ovens eventually surpassed those of gas ranges in 1975.

Furthermore, in 1976 the microwave became a more common household appliance than the dishwasher as it found its home in nearly fifty-two million U.S. households, or 60% of U.S. homes at the time.

Introduced in 1967, the Amana Radarange microwave oven would forever change the way American families prepare meals. Image: SMECC
Introduced in 1967, the Amana Radarange microwave oven would forever change the way American families prepare meals. Image: MECC.

Although microwave ovens today have advanced since the very first designs, at their core they still use the same cavity magnetron tube that was harnessed so effectively for WWII radar.

How a microwave oven works

Inside the Magnetron: Large magnets impose a field that causes the outward-flowing cloud to revolve (left). As it does, it forms spokes that pass each cavity between the plates (right). A passing spoke provides negative charge to the cavity, which then falls off until the next spoke arrives. The rise and fall creates an electromagnetic field in the cavities that oscillates at 2.45 gigahertz. Image: GEORGE RETSECK
Inside the Magnetron: Large magnets impose a field that causes the outward-flowing cloud to revolve (left). As it does, it forms spokes that pass each cavity between the plates (right). A passing spoke provides a negative charge to the cavity, which then falls off until the next spoke arrives. The rise and fall create an electromagnetic field in the cavities that oscillates at 2.45 gigahertz. Image: GEORGE RETSECK.

The microwave oven is quite a feat of physics and engineering. At its core, the oven exploits the polarity of water molecules which tend to rotate themselves into alignment with their positive ends in the direction of an electric field. With each rotation, the water molecule’s electrostatic potential energy is transferred into thermal energy. 

An analogy would be a very crowded room, in which everyone is told to turn and face the stage. In doing so, people brush up against one another as they turn and friction causes the conversion of some of their energy into thermal energy. The magnetron reverses its electric field very fast, so water molecules flip back and forth at a rate of billions of times per second.

Magnetron High voltage is sent to the cathode filament. After it heats up, it emits electrons that the positively charged anode plates attract. The attached antenna resonates at 2.45 gigahertz and emits microwaves from its tip--just like a radio-transmission antenna. Image: GEORGE RETSECK
Magnetron High voltage is sent to the cathode filament. After it heats up, it emits electrons that the positively charged anode plates attract. The attached antenna resonates at 2.45 gigahertz and emits microwaves from its tip–just like a radio-transmission antenna. Image: GEORGE RETSECK.

This heat is what actually cooks food in the oven. Because all particles in the food are vibrating and generating heat at the same time, food cooked in the microwave cooks much more swiftly than food cooked in a conventional oven where heat must slowly travel from the outside surface of the food inward.

The same radio waves that cook your food pass harmlessly through plastics, glass, and ceramics. It is this characteristic that keeps plastic plates from melting and glasses from exploding. It is also this feature of microwaves that makes them so energy efficient; they heat only the food and nothing more.

As you might have learned from experience (ouch!), metals reflect microwaves which is why they line the walls of the microwave such that no waves escape and cook anyone in the kitchen!

Tags: magnetronmicrowavemicrowave ovenradar

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Cars can hallucinate, too — and it’s a problem

byMihai Andrei
1 year ago
Environment

Radar satellites could show areas where sinkholes are forming, predicting the collapse before it happens

byMihai Andrei
3 years ago
Home science

Microwaving water really isn’t the same as heating it

byMihai Andrei
5 years ago
Chemistry

What Can Quartz Crystals Really Do?

byJohn Tuttle
7 years ago

Recent news

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.