Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science Physics

Graphene allows nano-engineering control for the first time

Mihai Andrei by Mihai Andrei
March 19, 2012
in Physics, Science

The amazing properties of graphene are being put to use more and more, as Evan Reed and Mitchell Ong from the Stanford School of Engineering have described a new way of engineering piezoelectrics into graphene. The study was published in the ACS Nano Journal.

When you apply a mechanical stress to certain materials, such as crystals, ceramics, or even biological materials, they become electrically charged, and this property is called piezoelectricity – basically, it is electricity resulting from pressure. Using this effect, their work extends engineering control to the nanoscale for the first time. Reed explained that the proportions of the applied pressure directly varies with the electrical field, and this approach might be the key to manipulating electronics at the nanoscale, and this phenomenon can bring a revolution in the field of straintronics. This is where graphene steps in.

ADVERTISEMENT

Graphene, which is basically a one-atom thick layer of carbon may offer an unprecedented degree of control over optical, electrical and mechanical properties for applications such as nanoscale transistors and touchscreens. In order to measure the piezoelectric field of graphene, they simulated graphene doped with fluorine, potassium, hydrogen, lithium and combinations of fluorine and lithium and fluorine and hydrogen on either sides. Researchers were absolutely surprised with the results, reporting that the effect of the 2D graphene were practically similar to those of 3D materials.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

Based on these positive results, scientists hope they can continue their studies, which can have a number of applications in a number of fields, including electronics, chemical sensing, energy harvesting, photonics and many, many more.

Via AZonano

ADVERTISEMENT

Tags: graphenenanoengineeringnanoscalepiezoelectricity
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.