ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Coldest antimatter yet might help scientists probe its secrets

Tibi PuiubyTibi Puiu
January 7, 2013
in Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A novel technique for cooling antimatter down to the point where it might become almost stationary might provide scientists with a better basis for studying one of the greatest modern mysteries today.

Antimatter, as it name implies, is the total opposite of matter and when the two meet they cancel each other out. For instance the opposite of an electron is a positron. It’s because of this fascinating behavior, however, that studying antimatter is extremely difficult, since we’re ubiquitously surrounded by matter. A great puzzling dilemma for physicists today is why is there so little antimatter present in the Universe compared to matter.

Antihydrogen and antimatter

It’s theorized that after the first Big Bang sparks, equal amounts of both matter and antimatter were spewed through out the early Universe, but for some yet unknown reason matter won out. Currently, the only instances antimatter has been observed naturally are those following radioactive decay or cosmic ray collisions, and though the existence of antimatter has been proven since the 1930s only recently could it be artificially produced, and in small quantities to top it over.

With this in mind, scientists have been looking to devise ways to ease antimatter research. A recent technique that has garnered quite a bit of attention was developed by Makoto Fujiwara, a research scientist at Canada’s particle physics lab TRIUMF and an adjunct professor at the University of Calgary, along with colleagues, and is called Doppler cooling. It implies chilling anti-hydrogen (with one positron and one anti-proton) to just a tad over absolute zero Kelvin – 25 times colder than ever attempted.

The technique has yet to be proven, though an advanced prototype experimental setup is in the works, however a computer simulation showed extremely promising results.

“The ultimate goal of antihydrogen experiments is to compare its properties to those of hydrogen,” physicist Francis Robicheaux of Auburn University in Alabama said in a statement. “Colder antihydrogen will be an important step for achieving this.”

“By reducing the antihydrogen energy, it should be possible to perform more precise measurements of all of its parameters,” Robicheaux said. “Our proposed method could reduce the average energy of trapped antihydrogen by a factor of more than 10.”

Fujiwara led in 2011 a team of scientists at CERN that made the first direct measurement of antimatter’s energy and also held particles of anti-hydrogen stable for as long as 15 minutes, still a record. Comparing the properties of hydrogen and anti-hydrogen might allow scientists to explain why there is such a great quantitative gap between the two. If the two are indeed proven to exhibit totally opposite properties then a sounds basis for further study might be built.

RelatedPosts

The world’s most powerful laser could put the Death Star to shame
Zapping lasers: German military 50 kW laser can shoot down mortar projectiles from 2km away
Physicists observe the light spectrum of antimatter for the first time
Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

The present technique uses precisely targeted lasers on antihydrogen in order to loose energy and chill it down. Remember, however, that antimatter and matter annihilate each other, so the key to their research is trapping antihydrogen – the scientists hope to achieve this through a system of magnetic fields.

“We want anti-hydrogen atoms as cold as possible in our trap, and by cold I mean not moving. In particular, to measure the gravitational properties, antihydrogen in our trap is still moving way too fast. So this paper has shown that the technique called laser cooling can be applied in our experimental set-up,” Mr. Fujiwara said.

The first immediate goals for Fujiwara and colleagues is to study basic properties of antihydrogen like colour, weight, how it reacts to light or gravity and so on. The laser cooling technique was described in a paper published in the Journal of Physics B.

[source]

Tags: antihydrogenantimatterlasermatterpositron

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

byTibi Puiu
3 weeks ago
News

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

byTibi Puiu
3 weeks ago
Science

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

byTibi Puiu
2 months ago
Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.