ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Ants follow Fermat’s principle of least time

Mihai AndreibyMihai Andrei
April 2, 2013
in Biology, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

If you know your physics (or optics, to be more specific), you’ve probably heard a lot about Fermat’s principle (or the principle of least time). Basically, what it states is that the path taken between two points by a ray of light is the path that can be traversed in the least time. A ray of light will always travel from A to B on the path which takes the least time, or other put, it will follow the fastest, not shortest path. Ok, so where do ants come in?

ant1

Well, apparently, ants follow Fermat’s principle as well. This is an issue when ants are forced to travel on two different surfaces, where they walk faster on one than the other. As this new study showed, in this kind of situation ants behave… just like light does.

Jan Oettler and his team, which included members from China, Germany and France compared the paths ants follow compared to those followed by ligh in the same conditions. The scientists experimentally studied the behavior of the little fire ant, Wasmannia auropunctata, one of the world’s 100 most invasive species.

They took several colonies of ants, put them in boxes and placed food in the corner opposite from the entrance. The surface of each foraging arena was split in half, and each half was covered by a different material; here, researchers used several different materials which differently affected the ants’ movement speed: rough polyester felt (1.73 mm/s), smooth polyester felt (2.97 mm/s), and polyethylene glass (4.89 mm/s).

ant2

So given the geometry of the setting and the ants’ movement speeds on the different materials, they handily calculated the trajectory which they would follow if they acted according to the Fermat principle. The researchers found that the ants’ paths closely matched those predicted – and the ants knew way better than taking the shortest path.

RelatedPosts

Voracious Plant Outsmarts Ants Even Without a Brain
Scientists made “ant yogurt”, recreating an ancient forgotten technique
Ugly Unicorn: Metal-tipped prehistoric ant drank the blood of its victims for dinner
Brawls for colony domination transforms winning worker ants into queens without DNA changes

“We found that a general rule applies to a dynamic system that relies solely on communication (pheromones) and social cooperation,” Oettler told Phys.org. “This system depends on two features. One is routing information that decays over time and needs to be refreshed, thus making the system flexible. And second on behavioral flexibility by the worker ants that carry this information. A path can only be adjusted by worker ants that do not follow this path, but rather take alternative routes (that they advertise), which may be faster (or slower) than the already established path.”

Researchers note that humans also follow Fermat’s principle – the most notable example being a lifeguard, that instinctively follows the shortest beach + water path to reach the drowning swimmer. But this is only the first step in a complex journey, which aims to understand the complex processes which govern ant movements in different conditions.

“We have only shown the outcome of this process,” Oettler said. “In the future we want to study the dynamics of the trail pheromones, their active compounds and evaporation rates. We want to perform behavioral tests with synthetic compounds and detect perception thresholds of individual ants. We also want to study the early dynamics of trail formation over time.”

Read the full article here

Tags: antfermatfermat principle

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Scientists made “ant yogurt”, recreating an ancient forgotten technique

byMihai Andrei
10 months ago
Genetics

Ants discovered agriculture 66 million years ago

byMihai Andrei
10 months ago
AntWeb.org image of Order:Hymenoptera Family:Formicidae Genus:Cataglyphis Species:Cataglyphis bicolor Specimen:casent0104612 View:profile
Biology

Scientists uncover the internal magnetic compass of ants

byMihai Andrei
1 year ago
Animals

Tiny ants are sending ripples through African ecosystems, changing how lions hunt

byMihai Andrei
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.