ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Ants can tell who’s who using their crazy sense of smell

Maybe the most amazing of social insects, ants use complex cues of pheromones to determine to which cast in the colony each individual ant belongs to. A team at University of California at Riverside found ants do this by sniffing out hydrocarbon chemicals present on their cuticles (outer shell). These cues are extremely subtle, but the ants can sense them with great sensitivity due to the way they're hardwired. It's enough to notice that ants have more olfactory receptor proteins in their genome than we humans have. Amazing!

Tibi PuiubyTibi Puiu
August 14, 2015 - Updated on November 16, 2020
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

New ant species from Borneo detonates itself to defend its colony
Waving away mosquitoes teaches them to stop bothering prey
Your reaction to smells could say a lot about your political preference, a new study suggests
The human nose can distinguish over a trillion scents

Maybe the most amazing of social insects, ants use complex cues of pheromones to determine to which cast in the colony each individual ant belongs to. A team at University of California at Riverside found ants do this by sniffing out hydrocarbon chemicals present on their cuticles (outer shell). These cues are extremely subtle, but the ants can sense them with great sensitivity due to the way they’re hardwired. It’s enough to notice that ants have more olfactory receptor proteins in their genome than we humans have. Amazing!

ant smell
Ants communicate with each other using pheromones, sounds, and touch. Like other insects, ants perceive smells with their long, thin, and mobile antennae. Image: Fragrantica

Previously, some biologists gathered around the hypothesis that worker ants could preferentially smell only non-nestmate cuticular hydrocarbons. The hypothesis suggested that ants aren’t sensitive enough to pick up hydrocarbons from nestmates with which they share too many pheromones. Anandasankar Ray, a neuroscientist and an associate professor of entomology, wasn’t entirely convinced, though.

Him and colleagues at UC Riverside decided to go the root and study antennal neurons and their responses to hydrocarbons on the cuticle. The team individually studied the neural activity of Camponotus floridanus ants as these came in contact with hydrocarbons – long chains of hydrogen and carbon molecules. The method they used is called  electrophysiology, and involved training the ants to associate certain hydrocarbons with sugary water, then measuring the electrical response of the neurons to these reactions. To their surprise, the researchers found the ants could distinguish between various forms of hydrocarbons with extreme sensitivity.

“These guys can smell almost any hydrocarbon we offered to them,” Ray said for Washington Post. “Along with it, we also discovered not only did they have a very extensive olfactory system, they are also able to distinguish very well between very closely related [compounds]. They are able to tell the difference between a hydrocarbon with 25 carbon atoms versus 24 atoms.”

“This broad-spectrum ability to detect hydrocarbons by the ant antenna is unusual and likely a special property of social insects. Using this high-definition ability to smell ‘ant body odor’ the ants can recognize the various castes in the colony as well as intruders,” Ray added.

When you go deeper into this, it starts making sense too. Hydrocarbons are low volatility compounds, meaning you have to be very close to them to pick them up, even if you’re a super sniffer like an ant. If they had gotten their cues from some different compound, say much more volatile, it would have been impossible for the ants to distinguish one another. A language becomes powerful when it is complex and meaning can be conveyed as specifically as possible. That’s what words are for. For ants, their language is chemical and cues have to be very subtle.

The broad-spectrum sensitivity of Camponotus laevigatus allows these ants to detect CHCs from both nestmates and non-nestmates.  Image: Cell Reports
The broad-spectrum sensitivity of Camponotus laevigatus allows these ants to detect CHCs from both nestmates and non-nestmates. Image: Cell Reports

Ultimately, depending on the cast it belongs to (queen, worker, warrior), each ant has its own blend made up of several cuticular hydrocarbons, the authors write in Cell Reports.

“We are closing in to finding the functional roles of these receptors, and, in particular, finding the olfactory receptors that detect pheromones from the queen who regulates much of the order in the colony,” Ray says.

Tags: antsmell

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

byTibi Puiu
4 months ago
News

Scientists made “ant yogurt”, recreating an ancient forgotten technique

byMihai Andrei
7 months ago
Genetics

Ants discovered agriculture 66 million years ago

byMihai Andrei
7 months ago
AntWeb.org image of Order:Hymenoptera Family:Formicidae Genus:Cataglyphis Species:Cataglyphis bicolor Specimen:casent0104612 View:profile
Biology

Scientists uncover the internal magnetic compass of ants

byMihai Andrei
1 year ago

Recent news

CERN Creates Gold from Lead and There’s No Magic, Just Physics

May 9, 2025

A New AI Tool Can Recreate Your Face Using Nothing But Your DNA

May 9, 2025

How Some Flowers Evolved the Grossest Stench — and Why Flies Love It

May 9, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.