ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Nobel Prize in Chemistry awarded to trio that created today’s lithium-ion batteries

Whenever you poke at your phone, hit the power button on your laptop, or start your Tesla, know that the work of these three laureates made it possible.

Alexandru MicubyAlexandru Micu
October 9, 2019 - Updated on January 9, 2020
in Chemistry, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

The Royal Swedish Academy of Sciences has decided to jointly award the Nobel Prize in Chemistry 2019 to John B. Goodenough, M. Stanley Whittingham (USA), and Akira Yoshino (Japan) “for the development of lithium-ion batteries“.

Image credits Nobelprize.org

This year’s Nobel Prize for Chemistry recognizes the importance of the lithium-ion battery in today’s world. Such batteries are lightweight, rechargeable, and powerful enough for a wide range of applications. From mobile phones to laptops and electronic cars, the lithium-ion battery keeps our world in motion. They’re also one of the cornerstones of fossil-fuel-free economies, as they’re able to store energy from renewable sources for long stretches at a time (they can withstand many recharge-discharge cycles).

No breaking down

The advantage of lithium-ion batteries is that they are not based upon chemical reactions that break down the electrodes, but upon lithium ions flowing back and forth between the anode and cathode.

Lithium-ion batteries have revolutionized our lives since they first entered the market in 1991. They have laid the foundation of a wireless, fossil-fuel-free society, and are of the greatest benefit to humankind.

The lithium-ion battery can trace its origin back to the oil crisis of the 1970s, the commission explained. Against this backdrop, a researcher named Stanley Whittingham was working to develop energy technologies that would not depend on the use of fossil fuels. His work with superconductors paved the way for the development of an innovative cathode for lithium batteries. This cathode was built from titanium disulfide which, at a molecular level, has spaces that can fit – intercalate – lithium ions. Today, the concept is known as electrode intercalation.

The anode in a Li-Ion battery (the positively-charged part) is made of metallic lithium, which is a strong electron donor. Coupled with the new cathode, such a battery could produce just over two volts of power, which is a lot. However, this battery was also very unstable, as metallic lithium is highly reactive — and it posed a real risk of explosion.

John Goodenough predicted that replacing the titanium disulfide in the cathode with a metal oxide would boost the battery’s capacity (measured in volts) to even greater heights — a hypothesis he proved in 1980 using cobalt oxide. His battery produced up to four volts, paving the way towards much more powerful batteries.

RelatedPosts

Scientist accidentally invents a rechargeable battery that could virtually last forever
Scientists Made a Battery Powered by Probiotics That’s Completely Biodegradable
Astronomers find the farthest evidence of fluoride to date, in a distant galaxy
Silicon-based life on Earth? Only artificially, so far — but maybe natural on other planets

Akira Yoshino built on Goodenough’s findings to produce the first commercially viable lithium-ion battery in 1985. He replaced the lithium in its anode with petroleum coke, a carbon-based material that could intercalate lithium ions. The resulting battery was a lightweight, robust battery that could withstand hundreds of cycles without any drop in performance. The secret to their success is that they don’t rely on chemical reactions to generate power (these break down electrodes over time) but on the physical flow of lithium ions between the anode and cathode.

Lithium-ion batteries have revolutionized our lives since they became commercially-available in 1991. Whenever you poke at your phone, hit the power button on your laptop, or start your Tesla, know that the work of these three laureates made it possible.

Tags: batteryChemistrylithium-ionNobel

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Biology

Scientists Made a Battery Powered by Probiotics That’s Completely Biodegradable

byTibi Puiu
2 days ago
Future

This Stretchy Battery Still Works After Being Twisted, Punctured, and Cut in Half

byTibi Puiu
2 months ago
Future

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

byTibi Puiu
3 months ago
Future

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

byTibi Puiu
4 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.