Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Scientists might soon be able to use underwater cables as seismometers

This could also be used to study ocean noise and sealife migration.

Mihai Andrei by Mihai Andrei
June 19, 2018
in Geology, News

With the right setup, anything that moves the cables around can be detected — and that includes earthquakes.

Image credits: Marra et al / Science.

Detecting earthquakes is important both for assessing risks to the population and for understanding the inner structure of the Earth. Thankfully, we have enough seismometers on land to detect all but the smallest (and harmless) earthquakes — but in the sea, it’s a different story.

Over 70% of our planet’s surface is covered in water, and seismometer coverage is limited to a handful of permanent ocean bottom stations. It’s very expensive and logistically difficult to maintain permanent sensors underwater, so there are many gaps. Now, a team of researchers led by Giuseppe Marra of the UK’s National Physical Laboratory has an idea how to fill those gaps.

They discovered the solution accidentally while working on advanced fiber-optic cables. These cables are so fine-tuned that any vibrations can cause a distortion of the signal — which is generally a problem to be solved. But Mara and colleagues realized that one man’s problems can be another man’s solution when they found that one of the vibration sources are earthquakes.

When an earthquake happens, it sends seismic waves through the planet, and as these waves eventually pass through the fiber, they cause a slight delay in the signal. This measurable delay affects the oscillating lightwave can be studied and used to localize earthquakes.

[panel style=”panel-info” title=”Triangulating earthquakes” footer=””]Earthquakes generate several types of waves. The first ones are the primary or P waves, and these are the fastest. The second ones are the S waves, and lastly, the surface waves (Love and Rayleigh waves) arrive. Calculating the delay between the first waves and the subsequent ones is important in locating earthquakes.

Triangulating earthquakes requires — as you’d imagine — at least three seismometers. However, if underwater cables are long enough, opposite ends of the same cable could serve as different seismometers.[/panel]

Researchers tested their technique using several earthquakes, and found that if the cables are complemented with equipment that maintains a perfectly stable frequency of laser oscillations, they can get the job done. The add-on equipment is essential, as the data from the cable itself can’t be used as an earthquake-monitoring signal.

“We detected earthquakes over terrestrial and submarine links with length ranging from 75 to 535 km and a geographical distance from the earthquake’s epicenter ranging from 25 to 18,500 km. Implementing a global seismic network for real-time detection of underwater earthquakes requires applying the proposed technique to the existing extensive submarine optical fiber network,” researchers write.

Since the ocean bottom is riddled with these cables and the system requires only small amounts of power, researchers are confident that this technique can be widely applied. They point out that a similar approach could also be used for other purposes, such as studying noise pollution in the ocean or even tracking marine mammals as they migrate.

Journal Reference: Marra et al. “Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables.” Science, 2018. DOI: 10.1126/science.aat4458

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Underwater power cables are ‘mesmerizing’ crabs around Scotland
  2. Beautiful map shows the mind-boggling extent of our underwater Internet cables
  3. Around 10% of Europe is prone to flooding. Seismometers could help us prepare better
  4. We’ll soon be able to hack our nerves into controlling diseases
  5. Dentists will soon be able to 3D print you a new tooth in minutes
Tags: earthquakefiber optic

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW