ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Tiny Surfers: How Bats Use Warm Air Waves for Epic Migrations

The discovery that bats synchronize their migrations with storm fronts provides critical insights into their survival strategies.

Mihai AndreibyMihai Andrei
January 8, 2025
in Animals, News
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit

Edward Hurme was puzzled. Every year, billions of bats migrate vast distances, guided by environmental cues like wind and temperature. But how do bats, weighing under 40 grams, manage to traverse thousands of kilometers? Their migration resembles that of birds but with some critical differences. While most birds migrate annually, bats follow more varied schedules. Many males skip migration entirely, while pregnant females often head to specific destinations.

Although bird migration has been extensively studied, bats remain shrouded in mystery. Using small, “Internet of Things” (IoT) sensors, Hurme and colleagues may have solved the mystery. They tracked 71 bats over three years, revealing an intriguing behavior: bats “surf” warm air waves during migration.

a bat portrait
Nyctalus noctula. Image in public domain.

Migration is a perilous endeavor, demanding energy and strategic planning. You wouldn’t do it unless there’s a clear benefit, and for bats, we’re not sure what that benefit is.

The perilous journey of noctule bats, which can travel up to 1,600 kilometers between wintering grounds and summer roosts, demands precision and energy efficiency. Even minor errors could be fatal. Tracking their movements, however, has historically been challenging.

Enter IoT telemetry tags. These revolutionary devices, weighing just over a gram, transmit real-time data via a long-range wireless network. Unlike older tags that required researchers to recapture bats for data retrieval, these sensors offered continuous insights into migration paths, environmental conditions, and energy expenditure.

“The sensor data are amazing!” says Hurme, the study’s first author and a postdoctoral researcher at the University of Konstanz, Germany. “We don’t just see the path that bats took, we also see what they experienced in the environment as they migrated. It’s this context that gives us insight into the crucial decisions that bats made during their costly and dangerous journeys.”

the sensor weighed on a scale
The tag weighs just over 1 gram and doesn’t disturb the bats. Image credits: Christian Ziegler / Max Planck Institute of Animal Behavior.

The data revealed how female common noctules synchronize their spring migrations with storm fronts, traveling hundreds of kilometers per night. These bats leverage the arrival of warm weather systems to reduce energy expenditure.

RelatedPosts

Barack Obama transfers $500 million to green climate fund in bid to save Paris Agreement
Sweet seagrass is saving oceans and reversing climate change — but we’re killing these gentle habitats
Mont Blanc glacier faces risk of collapse in Italy
Eradicating poverty requires surprisingly little energy

Surfing bats

Right from the start, it was clear that bats don’t migrate the same way as birds.

“There is no migration corridor,” says senior author Dina Dechmann from MPI -AB. “We had assumed that bats were following a unified path, but we now see they are moving all over the landscape in a generally northeast direction.”

bat flying after being tagged
The lightweight tags remained on common noctules for up to four weeks, after which they fell off. Image credits: Christian Ziegler / Max Planck Institute of Animal Behavior.

So bats don’t exactly fly willy-nilly, but they don’t follow strict migration paths, either. This wasn’t the only major difference compared to birds’ migration. While birds fly for longer times without stopping, bats make frequent stops, likely because they need to feed.

“Unlike migratory birds, bats don’t gain weight in preparation for migration,” says Dechmann. “They need to refuel every night, so their migration has a hopping pattern rather than a straight shot.”

Then, on certain nights, something striking started happening. “On certain nights, we saw an explosion of departures that looked like bat fireworks,” says Hurme. “We needed to figure out what all these bats were responding to on those particular nights.”

Again, the changes could be explained by the weather.

The perfect nights for migration

Bats would leave when air pressure dropped and temperatures spiked. In other words, they’d leave just before the storm.

“They were riding storm fronts, using the support of warm tailwinds,” says Hurme. The tag’s sensors that measured activity levels further showed that bats used less energy flying on these nights of warm wind, confirming that the tiny mammals were harvesting invisible energy from the environment to power their continental flights. “It was known that birds use wind support during migration, and now we see that bats do too,” he adds.

This enabled the bats to fly for so long and conserve energy. However, not all migrations occurred under ideal conditions.

Late-departing bats faced reduced wind support, leading to greater energy expenditure. This flexibility in migration timing highlights the adaptability of noctules but also suggests an energetic cost for missing the optimal migration window.

The researchers identified key environmental triggers for migration: increasing temperatures, falling barometric pressure, and strong wind support. These conditions, often associated with storm fronts, provided an optimal window for bats to make their long journeys.

An important finding for bats

The findings have profound implications for bat conservation. Migratory bats play important roles in ecosystems but also face numerous threats, from habitat loss to climate change. Understanding the environmental factors influencing their migration can inform strategies to protect critical habitats and minimize risks along their routes. However, if their routes are less well-defined than those of birds, it makes it all the more difficult to protect them.

This little bat can fly hundreds of kilometers in a single night; but climate change is making it much more difficult. Image credits: Kamran Safi / Max Planck Institute of Animal Behavior.

Climate change, as always, complicates things. Rising global temperatures are already altering the timing and conditions of migration. For noctule bats, earlier spring departures could either confer an advantage or create mismatches between arrival timing and food availability. The flexibility observed in this study suggests bats can adapt to some extent, but the energetic costs of suboptimal migration may have long-term consequences.

Journal Reference: “Bats surf storm fronts during spring migration” by Edward Hurme, Timm Wild, Ivan Lenzi, Martin Wikelski,
and Dina K. N. Dechmann is published in Science at http://science.org/doi/10.1126/science.ade7441

Tags: animal trackingbat migrationbatsclimate changeconservationDina DechmannEdward Hurmeenergy efficiencyIoT sensorsmigration behaviornoctule batsstorm fronts

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Climate

White House Wants to Destroy NASA Satellites Tracking Climate Change and Plant Health

byMihai Andrei
4 days ago
Climate

This Is the Oldest Ice on the Planet and It’s About to Be Slowly Melted to Unlock 1.5 Million Years of Climate History

byTibi Puiu
3 weeks ago
Climate

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

byMihai Andrei
1 month ago
Climate

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

byMihai Andrei
2 months ago

Recent news

This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025

Drone fishing is already a thing. It’s also already a problem

August 15, 2025

Some People Are Immune to All Viruses. Scientists Now Want To Replicate This Ability for a Universal Antiviral

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.