ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists make cheap energy-storing capacitors from ancient materials

In an innovative blend of old and new, MIT engineers have designed an energy-storing supercapacitor using time-tested materials.

Tibi PuiubyTibi Puiu
July 31, 2023
in Future, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
supercapacitor
Credit: MIT.

Ever imagine your home’s concrete foundation or the roadway beneath your tires could store energy? A team at MIT has not only imagined it but is already developing a solution to make it a reality. By merging cement, carbon black, and water, they’ve created a supercapacitor that could revolutionize how we store energy from renewable sources.

Reimagining common materials into high-tech energy storage devices

Often, answers to the most complex problems can be found by delving into the past. Cement, an age-old construction material, and carbon black, akin to fine charcoal, have been repurposed by MIT engineers to form the base of an innovative energy storage system.

How does it work? By combining cement, carbon black, and water, the team created a supercapacitor — think of it as a battery alternative — that can store electrical energy. For instance, your house’s concrete foundation could become an energy storage unit, capable of keeping a day’s worth of energy on standby.

You might be wondering how simple materials like cement and carbon black can morph into a high-tech energy storage device. To begin with, supercapacitors aren’t as complex as they might sound. Essentially, they are capacitors with a heightened capacity to store charges.

A capacitor is made up of two conductive plates submerged in an electrolyte and separated by a membrane. When a voltage is applied, the positively charged ions from the electrolyte gather on the negatively charged plate and vice versa, creating an electric field that can be stored and swiftly delivered when required.

But what makes the supercapacitors developed by the MIT team different? The cement-based material they’ve created has a dense, interconnected network of conductive material, resulting in a high internal surface area. By introducing carbon black into the cement-water mixture and allowing it to cure, the water reacts with the cement to form a branching network of openings. The carbon black infiltrates these spaces, creating wire-like structures within the hardened cement, essentially turning the material into a supercapacitor.

“The material is fascinating because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it,” says co-author Admir Masic, a chemist at MIT’s Civil and Environmental Engineering Department.

RelatedPosts

Archaeologists discover 4,000 year-old-game in rock shelter. It’s called “58 Holes”
The octopus and the beer bottle: how intelligent octopuses are making the most of polluted oceans
Can we reverse hearing loss? Yes we can, here is how it works
Mathematicians solve old mystery about spaghetti breaking

“You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

Renewable energy reimagined

cement supercapacitor
MIT engineers have created a “supercapacitor” made of ancient, abundant materials, that can store large amounts of energy. Credit: Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn.

This kind of novel storage solution can significantly impact how we use renewable energy. Consider this: the main sources of renewable energy, like wind, solar, and tidal power, generate output at variable times. These times often do not align with peak electricity usage, necessitating the development of efficient energy storage systems.

Professor Franz-Josef Ulm, one of the leading MIT researchers, believes their technology is exceptionally promising, particularly because of the ubiquity of cement. A 45-cubic-meter block of this material could store up to 10 kilowatt-hours of energy, enough to power a household for a day. Plus, supercapacitors can be charged and discharged faster than batteries, making them more efficient.

The MIT researchers proved this is possible by building a tiny supercapacitor, made using this new method and measuring only about 1 centimeter in diameter and 1 millimeter in thickness. Each of these small supercapacitors could be charged to 1 volt, akin to a 1-volt battery.

The team successfully connected three of these supercapacitors to power a 3-volt light-emitting diode (LED). With this proof of concept, they now have plans to construct larger versions, starting with units resembling typical 12-volt car batteries and eventually progressing to a colossal 45-cubic-meter version that can store enough energy to power an entire house.

“You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” Ulm said.

The applications of these massive supercapacitors stretch beyond powering households. Imagine concrete roadways storing solar energy and wirelessly charging electric vehicles passing by. This concept is already being developed in Germany and the Netherlands using standard batteries.

For structures away from grid power, such as remote homes or shelters, the cement supercapacitors could be charged by solar panels. The best part? According to Ulm, the system is scalable. The energy-storage capacity increases with the volume of the electrodes. By adjusting the mixture based on the desired properties for a specific application, the system can be tuned for optimal performance.

The researchers hope this innovation will usher in a new era for concrete in the energy transition, transforming it from a traditional construction material to a multifunctional component of our energy future.

The findings appeared in the Proceedings of the National Academy of Sciences.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
1 hour ago
Biology

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

byTibi Puiu
2 hours ago
Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
2 hours ago
Health

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

byMihai Andrei
3 hours ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.