ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scorching exoplanet is hotter than most stars. It’s so hot it might even leave a trail of atomic gas like a comet

That's one hot tomato!

Tibi PuiubyTibi Puiu
June 5, 2017 - Updated on June 6, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Some 650 light-years away from Earth lies one of the hottest planet known to astronomers. Called KELT-9b, the planet’s temperature runs in excess of 4,300°C (7,700°F) or only 1,300°C short of our sun’s surface temperature. For comparison, Venus, the hottest planet in our solar system and common illustration of what hell ought to look like registers only about 460°C at its surface.

An artist's conception of the KELT-9 system, which has a host star (left) that's almost twice as hot as our sun. Credit: NASA/JPL-Caltech/R. Hurt (IPAC).
An artist’s conception of the KELT-9 system, which has a host star (left) that’s almost twice as hot as our sun. Credit: NASA/JPL-Caltech/R. Hurt (IPAC).

A planet hotter than most stars we know of

This extreme gas giant was first discovered in 2014 by scientists working with the  Kilodegree Extremely Little Telescopes, or KELT for short. To find KELT-9b, researchers simply had to measure its parent star’s brightness as it dimmed when the exoplanet passed between the star and the telescope’s lens. These dips occurred extremely fast, about every 36 hours which means a year on KELT-9b only lasts about one and half days on Earth. No scientist must have expected to see absorption coefficients of molecules and atoms for exoplanets go beyond 3000 Kelvin, but here we are. That’s super extreme by many accounts. And that’s not all.

Unlike the planets of our solar system that all orbit around the sun’s equator, KELT-9b orbits around its parent star’s poles. It’s also tidally locked always facing its star with the same side like the moon does in relation to our planet. This means that the hottest part of the planet is the one facing the sun but the night-side is also very hot — hotter than Proxima Centauri, our nearest neighbor which has an exoplanet of its own.

The data from the observations was so flabbergasting that the researchers couldn’t tell at first whether this was a star or an exoplanet. Scott Gaudi, a professor of astronomy at Ohio State University, sided on the ‘this is a planet’ side and even made a bet with a colleague over a bottle of single-malt scotch which he apparently won.

So what would KELT-9b look like? Probably like Jupiter in a frying pan. At such extreme temperatures, molecular bonds are broken so everything is elemental atoms. There can’t be any methane, water vapor or CO2. The intense heat expands all this cloud of atomic gas like a soufflé —  a world nearly three times more massive than Jupiter but only half as dense, as reported in the journal Nature.

“Its day side would be very bright orange. Its night side would be very dark red. And it would have a cloud of evaporating hydrogen and helium, which would actually look violet,” Gaudi told NPR. 

Credit: NASA/JPL-Caltech/R. Hurt (IPAC).
Credit: NASA/JPL-Caltech/R. Hurt (IPAC).

That’s a very strange sight indeed, which is why some scientists are calling this a planet-star hybrid, with the important distinction that there is no nuclear fusion going on inside KELT-9b’s core. One wild hypothesis surrounding KELT-9b is it might have a tail akin to a comet’s, shedding hydrogen gas as it travels around its solar system. But that’s just a wild hypothesis that has no substantial proof to it whatsoever at this point. We might learn more if Gaudi and colleagues successful convince the right people to point the Hubble telescope at KELT-9b.

The hottest star in the universe we know of peculiarly orbits its parent star at the poles, not the equator. Credit: NASA/JPL-Caltech/R. Hurt (IPAC).
The hottest star in the universe we know of peculiarly orbits its parent star at the poles, not the equator. Credit: NASA/JPL-Caltech/R. Hurt (IPAC).

“KELT-9 radiates so much ultraviolet radiation that it may completely evaporate the planet. Or, if gas giant planets like KELT-9b possess solid rocky cores as some theories suggest, the planet may be boiled down to a barren rock, like Mercury,” co-author Keivan Stassun, professor of physics and astronomy at Vanderbilt, told Wired.

Whatever’s the case, KELT-9b shines brightly, almost like a star. It’s hotter than many K-type yellow-orange stars, after all. And as expected, it lives fast and dies young. It’s expected as KELT-9’s star runs out of hydrogen, it should cool and swell to three times its current size eating our hot tomato in the process. That’s in a billion years or so.

RelatedPosts

A novel way to generate electricity
Astronomers baffled by ‘fluffy’ exoplanet with the density of cotton candy
Scientists find baby exoplanets using a completely new method
Australia records its hottest day ever — while burning from a thousand bushfires

“As we seek to develop a complete picture of the variety of other worlds out there, it’s important to know not only how planets form and evolve, but also when and under what conditions they are destroyed,” said Stassun.

KELT-9 is certainly the hottest gas giant we’ve come across so far but it’s no the hottest exoplanet. That distinction belongs to Kepler 70b, a small, rocky planet with a surface temperature of 6,870 degrees Celsius (12,398 degrees F).

 

 

Tags: exoplanettemperature

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Distant Exoplanet Triggers Stellar Flares and Triggers Its Own Destruction

byKimberly M. S. Cartier
1 week ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
Home science

The Physics of Cozy Beds Shows Why Your Toes Freeze While Your Back Sweats

byMihai Andrei
2 months ago
News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.