ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists create bionic mushroom that generates electricity out of microbes

What do you get when you 3-D print cyanobacteria onto button mushrooms?

Tibi PuiubyTibi Puiu
November 9, 2018
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

What do you get when you 3-D print cyanobacteria onto button mushrooms? That would be an electrical generator, according to mechanical engineers at the Stevens Institute of Technology who mixed the two, along with a graphene nanoribbon network that carries current. They call this system ‘the bionic mushroom’.

Credit: Sudeep Joshi/Stevens Institute of Technology.
Credit: Sudeep Joshi/Stevens Institute of Technology.

Cyanobacteria –- single-celled organisms that are also known as blue algae –- use the sun’s energy, water, and carbon dioxide to produce oxygen by photosynthesis. About 2.6 billion years ago, cyanobacteria changed the state of the atmosphere forever by pumping oxygen, gradually transforming the planet from a hellish wasteland into a sprawling oasis of life. Without this transformation, known as the Great Oxidation Event, there would be no insects, no fish, and certainly no humans.

Cyanobacteria are also known among bio-engineers for their ability to generate small jolts of electricity, making them attractive prospects for energy generation. In 2016, researchers at Binghamton University used cyanobacteria to make a bio-solar panel and now researchers in New Jersey have integrated the microbes with nanomaterials and mushrooms to generate electricity.

“In this case, our system – this bionic mushroom – produces electricity,” said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. “By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system.”

White button mushrooms are not only delicious, but they also host a rich microbiota that cyanobacteria can munch on. When placed on the cap of white button mushrooms, the cyanobacteria were exposed to optimal levels of nutrients, moisture, pH, and temperature. Experiments showed that the setup generated small amounts of electricity and lasted for several days longer compared to silicone and dead mushrooms used as controls.

“The mushrooms essentially serve as a suitable environmental substrate with advanced functionality of nourishing the energy-producing cyanobacteria,” postdoctoral fellow Sudeep Joshi said in a statement. “We showed for the first time that a hybrid system can incorporate an artificial collaboration, or engineered symbiosis, between two different microbiological kingdoms.”

Densely packed cyanobacteria (green) achieved via 3D printing increases electricity-generating behavior Credit: Sudeep Joshi, Stevens Institute of Technology.
Densely packed cyanobacteria (green) achieved via 3D printing increases electricity-generating behavior Credit: Sudeep Joshi, Stevens Institute of Technology.

To collect the electricity, the researchers 3-D printed an “electronic ink” made up of graphene nanoribbons that form a branched network. The cyanobacteria were also 3-D printed as “bio-ink” onto the mushroom’s cap in a spiral pattern that intersected with the graphene ribbons. This way, electrons traveled through the outer membranes of the microbes to the conductive network. When light was shone on the mushroom, photosynthesis was activated leading to the generation of photocurrent — essentially this is another example of a bio-solar panel.

The amount of electricity generated by the ‘bionic mushroom’ varies depending on the density and alignment with which the bacteria is packed, the authors reported in the journal Nano Letters. The more densely packed the bacteria, the more electricity they produce, which is where 3-D printing came in handy.

“With this work, we can imagine enormous opportunities for next-generation bio-hybrid applications,” Mannoor said. “For example, some bacteria can glow, while others sense toxins or produce fuel. By seamlessly integrating these microbes with nanomaterials, we could potentially realise many other amazing designer bio-hybrids for the environment, defence, healthcare and many other fields.”

 

RelatedPosts

Golden Oyster Mushroom Are Invasive in the US. They’re Now Wreaking Havoc in Forests
Fantastic Fungi: Mind Blowing Mushroom Diversity Photographed by Steve Axford
How Poisonous Mushrooms Cook Up Toxins
Scientists map global “Internet of Mushrooms”
Tags: cyanobacteriamushroom

Share85TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

Golden Oyster Mushroom Are Invasive in the US. They’re Now Wreaking Havoc in Forests

byAishwarya Veerabahu
4 weeks ago
News

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

byMihai Andrei
2 months ago
News

The Earth’s oceans were once green. Then, cyanobacteria and iron came in

byMihai Andrei
4 months ago
Biology

Researchers hijacked bacteria to produce sustainable, meat-like protein

byMihai Andrei
1 year ago

Recent news

It Costs Less Than A Hundredth Of A Cent To Stop An Hour Of Chicken Pain, Scientists Say

August 19, 2025

A Croatian Freediver Held His Breath for 29 Minutes and Set a World Record

August 19, 2025

AI Visual Trickery Is Already Invading the Housing Market

August 19, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.