ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Bedtime protein shakes might lead to more muscle gain than daytime protein without adding fat or harming sleep

Bedtime protein shakes seem to be leading to better gains than daytime intake.

Tibi PuiubyTibi Puiu
March 6, 2019
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Studies suggest that ingesting protein just before overnight sleep improves muscle gains in response to resistance training. However, does the timing of the protein intake really matter that much? Seems so, according to a new review of recent studies which found that overnight sleep is a unique nutritional window for boosting muscle gains.

Credit: Pixabay.
Credit: Pixabay.

The review was led by Dr. Tim Snijders, Assistant Professor at Maastricht University. In 2015, Snijders and colleagues performed their own investigation of muscle gain from nightly protein intake. Their study involved 44 healthy young men on a 12-week lifting program, half of whom were given a pre-sleep protein shake consisting of 30g of casein and 15 grams of carbs, while the other half received an energy-free drink. Both groups grew bigger quads and could lift more but the protein-before-bed group saw better gains in both muscle strength and size.

Snijders’ study begged the question: is the timing of the protein shake before bed important or is it all just about the higher intake of protein and calories? That is difficult to show directly because “a huge number of participants would be needed to prove whether a difference might exist in response to pre-sleep protein, versus protein intake at other times of the day,” explained Snijders.

However, this most recent review of relevant scientific literature suggests that there are numerous indirect indicators that pre-sleep protein is specifically important for muscle gain, with sleep playing a unique window of opportunity.

When muscles suffer trauma from resistance training, this disruption activates satellite cells located on the outside of muscle fibers to proliferate at the injury site. These cells perform the biological function of repairing or replacing damaged muscle fibers, often leading to an increase in muscle fiber cross-sectional area (hypertrophy). In order to sustain hypertrophy, muscle cells need amino acids from protein present in the blood. However, the body does not release amino acids at near-constant circulating levels. Rather, they fluctuate in peaks and valleys depending on the amount of ingested protein.

“A survey of over 500 athletes found they were typically consuming at total of more than 1.2g protein per kilo of bodyweight across three main meals, but only a paltry 7g of protein as an evening snack. As a result, lower levels of amino acids would be available for muscle growth during overnight sleep,” Snijders commented on the results of one of the studies included in his review.

Evidence suggests that pre-sleep protein intake allows muscles to absorb more amino acids at night — and this doesn’t mean that there will be less during the day.

“The muscle-building effects of protein supplementation at each meal seem to be additive. In one study we found that the consumption of ample amounts of protein (60g whey) before overnight sleep did not alter the muscle protein synthetic response to a high-protein breakfast the following morning,” Snijders said.

“What’s more, others have shown that adding a protein supplement at bedtime does not affect appetite the following morning – so it is unlikely to compromise total protein or calorie intake.”

Bedtime protein doesn’t seem to make you fat either. Surprisingly, it might have the opposite effect by speeding up metabolism. In one study, researchers compared an 8-week morning vs evening casein program and found no difference in fat mass between the two programs.

RelatedPosts

How birds “see” magnetic fields
Eat more plant protein for a longer and healthier life, new study concludes
Underwater Atomic Force Microscopy opens new frontiers for biologists
Study proves muscle memory happens on a genetic level

“Supporting this, another group found in 11 young active men that a pre-sleep casein shake actually increased the rate of fat burning the following day. This might be because casein ingestion reduces the insulin response to subsequent meals, which pushes your body to use more fat,” Snijders said.

The review also found that bedtime protein doesn’t interfere with sleep quality or drive onset latency.

“In conclusion, protein ingestion prior to sleep is an effective interventional strategy to increase muscle protein synthesis rates during overnight sleep and can be applied to support the skeletal muscle adaptive response to resistance-type exercise training,” the authors concluded.

The findings appeared in the journal Frontiers in Nutrition

Tags: gymmuscleprotein

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Aging Might Travel Through Your Blood and This Protein Is Behind It

byTibi Puiu
2 weeks ago
Health

Muscle bros love their cold plunges. Science says they don’t really work (for gains)

byMihai Andrei
2 months ago
Biology

Scientists Discover Largest Protein Hidden in Toxic Algae

byTibi Puiu
1 year ago
NASA 3503281
Science

Researchers sent human muscle cells to space. They came back older

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.