ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Astronomers confirm heavy elements are born from neutron star collisions

You like gold? That too may have been forged by the catacylsmic merger of neutron stars millions of years ago.

Tibi PuiubyTibi Puiu
October 24, 2019
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Heavier elements like iron, calcium, and nickel are made after atoms fuse in massive stellar explosions known as supernovae. Other relatively light elements, like aluminum, are made inside giant stars and blown out into space by stellar winds. But until now astronomers weren’t sure how much heavier elements such as gold, silver, or strontium formed.

This is where a groundbreaking new study comes in — the findings suggest that strontium, and likely other heavy-weight elements, is produced in the aftermath of a merger of two neutron stars.

A team of European researchers, using data from the X-shooter instrument on ESO’s Very Large Telescope, has found signatures of strontium formed in a neutron-star merger. This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. In the foreground, we see a representation of freshly created strontium.

In 2017, astronomers detected a cosmic cataclysmic event: The merger of two neutron stars from 130 million years ago. The force of the collision was so strong that it literally shook the fabric of space-time, generating gravitational waves that eventually reached Earth, where they were detected. The two neutron stars either merged into a huge single neutron star or collapsed into a black hole.

A neutron star is the collapsed core of a large star — they’re the smallest and, at the same time, densest stars we know of. Most models suggest that they are made almost exclusively of neutrons — hence the name.

The existence of gravitational waves, which were first predicted by Einstein’s Theory of General Relativity about a hundred years ago, was confirmed only in 2016. The event was recorded by the Laser Interferometer Gravitational-Wave Observatory (LIGO), whose founders were awarded this year’s Nobel Prize in Physics. 

Gravity waves are essentially ripples in the fabric of spacetime which are generated by interactions between very massive accelerating cosmic objects, such as neutron stars or black holes. Physicists liken gravity waves to the waves generated when a stone is thrown into a pond.

But, it’s not just gravitational waves that emerged out of the neutron star merger. The merger, known as GW170817, also generated a kilonova — a massive explosion that is much brighter than a regular nova but less so than a supernova. This was the first time that this type of nova was ever witnessed.

RelatedPosts

We’re made of stardust, but heavier elements are made of black-hole-and-neutron-star dust
Why the gravitational waves splashed by the merger of two dying stars spells a revolution in astronomy
Neutron Star and Black Hole’s Final Dance Observed for the First Time
There’s a strange similarity between your cells and neutron stars

Scientists had suspected for some time that heavier elements may be forged during neutron star collisions. In a new study published in Nature, astronomers used ESO’s X-shooter spectrograph on the Very Large Telescope (VLT) to look for signatures of such elements in the kilonova.

Astronomers recorded a series of spectra from the ultraviolet to the near-infrared, which, when analyzed, revealed the presence of strontium.

Strontium is naturally found in the soil and some minerals. It’s what gives fireworks their dazzling red color.

To make strontium, other atoms need to be bombarded very rapidly with a huge number of neutrons under high pressure and temperature. The process, known as rapid neutron capture, needs to happen fast enough for an atomic nucleus to capture some of the neutrons before they decay in order to produce very heavy elements.

“By reanalysing the 2017 data from the merger, we have now identified the signature of one heavy element in this fireball, strontium, proving that the collision of neutron stars creates this element in the Universe,” says the study’s lead author Darach Watson from the University of Copenhagen in Denmark.

“This is the final stage of a decades-long chase to pin down the origin of the elements,” says Watson. “We know now that the processes that created the elements happened mostly in ordinary stars, in supernova explosions, or in the outer layers of old stars. But, until now, we did not know the location of the final, undiscovered process, known as rapid neutron capture, that created the heavier elements in the periodic table.”

This montage of spectra taken using the X-shooter instrument on ESO’s Very Large Telescope shows the changing behavior of the kilonova in the galaxy NGC 4993 over a period of 12 days after the explosion was detected on 17 August 2017. Each spectrum covers a range of wavelengths from the near-ultraviolet to the near-infrared and reveals how the object became dramatically redder as it faded. Credit: ESO.

This kind of research is still in its infancy. There is still much to learn about how neutron stars merge and their subsequent kilonovae. In the future, by analyzing more such events, astronomers hope to identify other heavy elements.

“This is the first time that we can directly associate newly created material formed via neutron capture with a neutron star merger, confirming that neutron stars are made of neutrons and tying the long-debated rapid neutron capture process to such mergers,” says Camilla Juul Hansen from the Max Planck Institute for Astronomy in Heidelberg, who played a major role in the study.

“We actually came up with the idea that we might be seeing strontium quite quickly after the event. However, showing that this was demonstrably the case turned out to be very difficult. This difficulty was due to our highly incomplete knowledge of the spectral appearance of the heavier elements in the periodic table,” says University of Copenhagen researcher Jonatan Selsing, who was a key author on the paper.

Tags: neutron star

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago
News

Neutron Stars Could Be The Best Place to Look for Dark Matter

byTibi Puiu
8 months ago
A striking artifact discovered in Panama, dated 700-1000 CE. "Winged Pendant, Gran Coclé," credit: Gilcrease Museum
Periodic Table

How Gold is made and how it got to our planet

byTibi Puiu
2 years ago
News

Astronomers detect magnetic star flashing in an instant with the energy produced by the sun in 100,000 years

byTibi Puiu
3 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.