ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

NASA’s Juno to make closest flyby to Jupiter’s largest moon

It will provide information about the Moon's composition, ice shell, ionosphere and magnetosphere.

Fermin KoopbyFermin Koop
June 6, 2021
in News, Science, Space, Space flight
A A
Share on FacebookShare on TwitterSubmit to Reddit

NASA’s Juno spacecraft will fly at only 1,038 kilometers (645 miles) from the surface of Jupiter’s largest moon, Ganymede, tomorrow, June 7. It will be the closest-known flyby since the Galileo spacecraft made its penultimate close approach more than a decade ago and it’s expected to yield valuable insights into Jupiter’s moon. 

Left to right: The mosaic and geologic maps of Jupiter’s moon Ganymede were assembled incorporating the best available imagery from NASA’s Voyager 1 and 2 spacecraft and NASA’s Galileo spacecraft. Image credit: NASA

Juno’s science instruments will start gathering data about three hours before the spacecraft’s closest approach. The measurements will provide valuable information into the Moon’s composition, ionosphere, magnetosphere, and ice shell. They will also benefit future missions to the Jovian system, which includes Jupiter, its rings and moons. 

“Juno carries a suite of sensitive instruments capable of seeing Ganymede in ways never before possible,” Scott Bolton, Juno’s main investigator, said in a statement. “By flying so close, we will bring the exploration of Ganymede into the 21st century, both complementing future missions with our unique sensors and helping prepare for the next generation of missions to the Jovian system.”

Juno’s flyby is powered by solar energy and will send the information and images about this moon to Earth. Due to the speed of the flyby, the moon will go from being a point of light to a viewable disk, then back to a point of light in about 25 minutes. Ganymede is larger than the planet Mercury and it’s the only moon in the solar system with its own magnetosphere.

With an ultraviolet spectrograph, a microwave radiometer, and an infrared mapper, Juno will peer into Ganymede’s water-ice crust, gathering data on its composition and temperature. Bolton said the MWR will provide information of how the composition of how the composition and structure of the moon’s ice shell varies with depth. 

NASA will also use the signals from Juno’s wavelengths to perform a radio occultation experiment to probe the moon’s tenuous ionosphere – the outer layer of an atmosphere where gases are excited by solar radiation to form ions. This will help to understand the connection between the moon’s ionosphere, its magnetic field, and Jupiter’s magnetosphere. 

At the same time, Juno’s navigation camera, originally tasked to help the orbiter on course, will be in charge of collecting information on the high-energy radiation environment in the region near Ganymede. Heidi Becker, Juno’s radiation monitoring lead, explained that a special set of images will be collected as part of that experiment. 

Exploring Jupiter

Juno’s main goal is to understand the origin and evolution of Jupiter. Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation. As the main example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars.

RelatedPosts

How many moons does Jupiter have? A LOT!
Adorable NASA robocube will float and do the housekeeping aboard the ISS
NASA spacecraft set to visit giant asteroid this weekend
NASA successfully tests 3D printed rocket engine injector

The mission is the second spacecraft designed under NASA’s New Frontiers Program. The first was the Pluto New Horizons mission, which flew by the dwarf planet in July 2015 after a nine-and-a-half-year flight. Juno will investigate the existence of a solid planetary core, map Jupiter’s magnetic field, measure the amount of water in the atmosphere and observe the planet’s auroras. 

Just like the sun, Jupiter is mostly hydrogen and helium, so it must have formed early, capturing most of the material left after our star came to be. But it’s so far unclear how this happened. Jupiter’s giant mass allowed it to hold onto its original composition, providing with a way of tracing our solar system’s history.

Tags: jupiternasa

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
3 months ago
Future

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

byTibi Puiu
4 months ago
News

NASA’s Curiosity Rover Spotted Driving Across Mars From Space for the First Time

byTibi Puiu
4 months ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.