Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Nanotechnology

Brighter and cheaper LEDs could be made from perovskite

Tibi Puiu by Tibi Puiu
August 14, 2014
in Nanotechnology, News

perovskite_led
LEDs made from perovskite (credit: Zhi-Kuang Tan)

We’ve covered quite a bit the recent developments involving perovskite as an extremely promising light-to-energy conversion semiconductor. Now, researchers at University of Cambridge, University of Oxford, and Ludwig-Maximilians-Universität are performing research on perovskite-based devices that work the other way around by emitting light. Their research has turned out promising results that suggest high-brightness LEDs, manufactured at low cost and more easily, can be harnessed using perovskite.

High power LEDs of the future

“Perovskite” is a general term used to describe a group of materials that have a distinctive crystal structure of cuboid and diamond shapes. Their efficiency at converting light into electrical energy has opened up a wide range of potential applications. The perovskites that were used to make the LEDs are known as organometal halide perovskites, and contain a mixture of lead, carbon-based ions, and halogen ions known as halides. These materials dissolve well in common solvents, and assemble to form perovskite crystals when dried, making them cheap and simple to make.

“These organometal halide perovskites are remarkable semiconductors,” said Zhi-Kuang Tan, a PhD student at the University of Cambridge’s Cavendish Laboratory and the paper’s lead author. “We have designed the diode structure to confine electrical charges into a very thin layer of the perovskite, which sets up conditions for the electron-hole capture process to produce light emission.”

The team reports an infrared radiance of 13.2 W sr−1 m−2 at a current density of 363 mA cm−2, with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. The LEDs were made a simple manufacturing process, where the perovskite solution is prepared and spin-coated onto a substrate. Unlike current LED manufacturing, the process doesn’t involve high temperature, vacuum or complex purification procedures, because the perovskite assembles readily into crystals. The team is now looking to increase the efficiency of the LEDs and to use them for diode lasers, which are used in a range of scientific, medical and industrial applications, such as materials processing and medical equipment.

Findings appeared in the journal Nature Communications.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Cheaper, brighter and easier to manufacture LEDs created from organic-inorganic hybrid class of materials
  2. Scientists create better, cheaper perovskite crystals
  3. Perovskite solar cells might help the solar market grow to new heights
  4. Charge nano-map could help scientists turn perovskite into THE solar cell material
  5. Stronger, longer-lasting perovskite solar panels could be on the way
Tags: ledsperovskite

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW