Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science Physics

MIT engineers create LED that has 230% efficiency. Thermodynamics laws still in place

Tibi Puiu by Tibi Puiu
March 9, 2012
in Physics, Research
Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

A typical light emitting diode, captioned here only for illustrative purposes. Not the actual LED used in the presently discussed research.
A typical light emitting diode, captioned here only for illustrative purposes. Not the actual LED used in the presently discussed research.

A group of researchers at MIT have successfully managed to create a light emitting diode (LED) that has an electrical efficiency greater than 100%. This might sound preposterous, and against everything you learned in physics, however the system is still governed by fundamental laws of thermodynamics.

This extraordinary power conversion efficiency was obtained by a decrease in applied voltage to an LED with a small band gap. As the voltage was steadily halved, it was observed that the electrical power was reduced by a factor of four, but the light power emitted only dropped by a factor of two. Where this extra energy come from? The key here is lattice vibrations caused by heat coming from the surroundings. Thus, the device’s efficiency is inversely proportional to its output power and diverges as the applied voltage approaches zero. Over 100% efficiency was reached in the experiments, all without violating energy conservation principles.

The best efficiency was reached when such a LED was plugged to 30 picowatts, powering a LED which produced 69 picowatts of light, in the trillionth of a watt order – 230% efficiency. There’s a huge flaw in this otherwise miracle system – the power itself is simply too small to light anything. The principle itself is terribly exciting and the MIT scientists involved in the research are confident these findings will aid new advances in energy-efficiency electromagnetic communication.

Results were described in a recently published paper in the journal Physical Review Letters.

Tags: electrical engineeringLEDmitthermodynamics
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.