ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

The minimum and maximum possible temperatures

Mihai AndreibyMihai Andrei
March 5, 2012 - Updated on June 11, 2023
in Other, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Since the start of the year, I’ve received quite a few questions regarding absolute temperatures – highest and lowest, so I decided to start a brief discussion around the two values, in which I will give the basic facts about them, so feel free to step in and add more info or questions.

Absolute zero

In thermodynamics, absolute zero is impossible to reach; it is the temperature at which entropy reaches minimum value, entropy being a property used to determine the energy not available for work, or to put it in layman terms, a state of  ‘molecular disorder’ of any substance. Absolute zero or absolute 0 K (0 degrees on the Kelvin scale, which is typically used for absolute values) equals −273.15° on the Celsius scale and −459.67° on the Fahrenheit scale.

Scientists have managed to get extremely close to absolute zero, at 100 picoKelvins, or 10-10 Kelvins, but as I said, reaching absolute zero is impossible, at least with our current knowledge. Researchers have noted some remarkable properties of matter, when they get close to this temperature, such as superconductivity.

Now, quite a lot of people know about this; but what many people don’t know is that similar to how there is a minimum possible accepted temperature, there is also a maximum temperature, called the Planck temperature.

The Planck and maximum temperature

In the Planck temperature scale, 0 is absolute zero, 1 is the Planck temperature, and every other temperature is a decimal of it. This maximum temperature is believed to be 1.416833(85) x 1032 Kelvin degrees, and at temperatures above it, the laws of physics just cease to exist.

However, many don’t agree with this rather cosmological model and believe that as we continue to find out more and more things about the Universe we live in, the maximum temperature will continue to grow.

RelatedPosts

A novel way to generate electricity
Scientists find link between obesity and body temperature
Giving up the Ghost: Science Takes on the Supernatural
‘Goldilocks area’ not nearly enough for habitable planets – internal temperature is also important

From what I have been able to find, the highest temperature obtained on Earth was 3.6 billion degrees, which even though is over 2.000 times hotter than the interior of the Sun, is only an insignificant fraction of 1032 degrees.

Tags: temperaturethermodynamics

Share13TweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Chemistry

Want to make the perfect pasta? Physics finally has the answer

byAlexandra Gerea
1 month ago
Rocks and Minerals

The role of temperature in forming rocks

byMihai Andrei
1 year ago
Climate

This window coating plans to make our buildings cooler without using any energy at all

byAlexandru Micu
3 years ago
Sun

How hot is the sun?

byAlexandru Micu
4 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.