ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

One research team proposes swapping atmospheric methane for CO2, and it might be a good idea

It's not the best solution, but it could help.

Alexandru MicubyAlexandru Micu
May 21, 2019
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A relatively simple but counterintuitive approach aims to fight climate change — by actually increasing CO2 emissions.

Methane.
Image via Pixabay.

Fighting climate warming with greenhouse emissions might sound like it won’t work, because it wouldn’t. The team that authored this study, however, doesn’t just aim to increase CO2 levels in the atmosphere. Rather, it proposes that we degrade methane, a much more potent greenhouse gas, into CO2 — the swap, they write, would be a net benefit for world climate.

The study proposes zeolite, a crystalline material that consists primarily of aluminum, silicon, and oxygen, as a key material to help us scrub methane emissions.

The lesser of two evils

“If perfected, this technology could return the atmosphere to pre-industrial concentrations of methane and other gases,” said lead author Rob Jackson, the Michelle and Kevin Douglas Provostial Professor in Earth System Science in Stanford’s School of Earth, Energy & Environmental Sciences.

Much more relevant to the current situation, the team notes, is that this process is also profitable. Boiled down, the idea is to take methane from sources where it’s difficult or expensive to eliminate — from cattle farms or rice paddies, for example — and degrade it into CO2.

Methane concentrations in the atmosphere are almost two-and-a-half times higher today than before the Industrial Revolution, the team explains. There’s a lot less methane than CO2 in the air, granted, but methane is 84 times more potent than CO2 as a climate-warming gas over the first 20 years after its release. Finally, some 60% of atmospheric methane today is directly generated by human activity.

Most climate strategies today focus on CO2, which is understandable. It’s the largest (by quantity) greenhouse gas we emit, and it’s easy to relate to — we breathe out CO2, cars belch out CO2, factories do too, and plants like to munch on it. But scrubbing other greenhouse gases, particularly methane due to its enormous greenhouse effect, could be useful as a complementary approach, the team explains. Furthermore, there’s just so much CO2 already floating around — and we keep pumping it out with such gusto — that CO2-removal scenarios often call for billions of tons to be removed, over decades, which would still not get us to pre-industrial levels

“An alternative is to offset these emissions via methane removal, so there is no net effect on warming the atmosphere,” said study coauthor Chris Field, the Perry L. McCarty Director of the Stanford Woods Institute for the Environment.

Methane levels could be brought back down to pre-industrial levels by removing about 3.2 billion tons of the gas from the atmosphere, the team notes. Converting all of it into CO2 would be equivalent to a few months of global industrial emissions, which is relatively little, but would have an outsized effect: it would eliminate approximately one-sixth of all causes of global warming to date.

RelatedPosts

Scientists strive to create inorganic life
Heads of states from 170 countries sign deal that bans global warming chemicals used in refrigerators and AC
Curbing climate change: carbon storage is good, forests are oft-times better
People spend more on climate adaptability to protect capital, not lives

So why then didn’t anybody think of this before? Well, the thing is that methane is hard to scrub from the air because its overall concentrations are so low. However zeolite, the team explains, is really really good at capturing the gas due to its “porous molecular structure, relatively large surface area and ability to host copper and iron,” explains coauthor Ed Solomon, the Monroe E. Spaght Professor of Chemistry in the School of Humanities and Sciences. The whole process could be as simple as using powerful fans to push air through reactors full of zeolite and catalysts. This material can then be heat-treated to form and release carbon dioxide gas.

Now let’s talk money. If market prices for carbon offsets rise to $500 or more per ton this century as predicted by most relevant assessment models, the team writes, each ton of methane removed from the atmosphere could be worth more than $12,000. A zeolite reactor the size of a football field could thus produce millions of dollars a year in income while removing harmful methane from the air. This is very fortunate as, in my experience, nothing motivates people to care about the environment quite like making money from saving it.

In principle, the researchers add, the approach of converting a more harmful greenhouse gas to one that’s less potent could also apply to other greenhouse gases.

The paper “Methane removal and atmospheric restoration” has been published in the journal Nature Sustainability.

Tags: carbonchang'eClimateClimate warmingco2dioxidemethane

Share23TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Science

Climate Change Is Breaking the Insurance Industry

byMihai Andrei
1 month ago
News

Scientists just made butter from air — and it’s hitting the market

byAlexandra Gerea
2 months ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
2 months ago
News

Scientists Say the Moon Was Once a Giant Ocean of Molten Rock

byTibi Puiu
3 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.