ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Machine learning is paving the way towards 3D X-rays

It's still not ready for a hospital near you, but it will get there eventually.

Alexandru MicubyAlexandru Micu
July 27, 2021
in News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have developed a new AI-based framework that can produce X-ray images in 3D.

The Advanced Photon Source (APS) at Argonne National Laboratory, one of the most technologically complex machines in the world, provides ultra-bright, high-energy x-ray beams for researchers across the USA. Image credits Argonne National Laboratory / Flickr.

The team, which includes members from three divisions at Argonne, has developed a method to create 3D visualizations from X-ray data. Their efforts were meant to allow them to better use the Advanced Photon Source (APS) at their lab, but potential applications of this technology range from astronomy to electron microscopy.

Lab tests showed that the new approach, called 3D-CDI-NN, can create 3D visualizations from data hundreds of times faster than existing technology.

More dimensions

“In order to make full use of what the upgraded APS will be capable of, we have to reinvent data analytics. Our current methods are not enough to keep up. Machine learning can make full use and go beyond what is currently possible,” says Mathew Cherukara of the Argonne National Laboratory, corresponding author of the paper.

The “CDI” in the technique’s name stands for coherent diffraction imaging, which is an X-ray technique that involves reflecting ultra-bright X-ray beams off of a certain sample that’s being investigated. These are later picked up by an array of detectors, and processed to produce the final image. The issue with this, says Cherukara, is that these detectors are limited in what information they can pick up from the beams. The “NN” stands for “neural network”.

Since important information can be missed during this step, software is used to fill it back in. Naturally, this is a very computationally- and time-intensive step. The team decided to train an AI that could side-step this entirely, being able to recognize objects straight from the raw data. They trained the AI using simulated X-ray data.

“We used computer simulations to create crystals of different shapes and sizes, and we converted them into images and diffraction patterns for the neural network to learn,” said Henry Chan, the lead author on the paper and a postdoctoral researcher in the Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility at Argonne, who led this part of the work. “The ease of quickly generating many realistic crystals for training is the benefit of simulations.”

After this, the AI was pretty good: it could arrive at close to the right answer in an acceptable span of time. The team further refined it by adding an extra step to the process, to help improve the accuracy of its output. They then tested it on real X-ray readings of gold particles collected at the APS. The final form of the neural network proved it can reconstruct the information not captured by detectors using less data than current approaches.

The next step, according to the team, is to integrate it into the APS’s workflow, so that it can learn from new data as it’s being taken. The APS is scheduled to receive a massive upgrade soon, which will increase the speed at which it can collect X-ray data roughly 500-fold. With this in mind, having an AI such as the one created by the team available to process data in real-time would be invaluable.

RelatedPosts

A New Study Reveals AI Is Hiding Its True Intent and It’s Getting Better At It
Organic transistors bring us closer to brain-mimicking AI
For better or worse, machine learning is shaping biology research
AI Reveals Nearly One Million Potential Antibiotics to Fight Drug-Resistant Superbugs

X-rays can allow us to see how materials behave on the nanoscale, i.e. on scales 100,000 smaller than the width of a human hair. But the sheer amount of data captured at such resolutions meant that processing remained time-consuming. Technology such as this, the team explains, would allow us to peer at the very, very small much more easily than ever before. Alternatively, it could help us understand the very large, as well, as several types of astronomical bodies emit X-rays towards Earth.

And, while the work at Argonne was carried out using samples of crystal, there’s no reason why the technology can’t be adapted for medical applications, as well.

“In order to make full use of what the upgraded APS will be capable of, we have to reinvent data analytics,” Cherukara said. “Our current methods are not enough to keep up. Machine learning can make full use and go beyond what is currently possible.”

The paper “Rapid 3D nanoscale coherent imaging via physics-aware deep learning” has been published in the journal Applied Physics Reviews.

Tags: Argonnemachine learningx-rays

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

3D-Printed Pen With Magnetic Ink Can Detect Parkinson’s From Handwriting

byTibi Puiu
1 week ago
History

AI Would Obliterate the Nazi’s WWII Enigma Code in Minutes—Here’s Why That Matters Today

byTudor Tarita
1 month ago
Future

This Chip Trains AI Using Only Light — And It’s a Game Changer

byMihai Andrei
1 month ago
An image of the 3D printed nano lattice (left) and a cell of the lattice resting on a bubble (right)
Materials

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

byRupendra Brahambhatt
2 months ago

Recent news

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.