ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Is this the world’s first un-cuttable material?

This could make unbreakable bike locks -- among others.

Mihai AndreibyMihai Andrei
July 22, 2020
in Materials, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

It’s called Proteus, and sticks and stones will not break its bones.

That’s as far as an angle grinder made it through this Proteus bar. Image credits:
Dr. Florian Bittner, Institute of Plastics and Circular Economy IKK, Leibniz University Hannover, Germany / Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI, Hannover, Germany

The new material was named after an ancient Greek God — Proteus, god of rivers, the “Old Man of the Sea“, as Homer called him. It’s a fitting name since researchers took inspiration from sea creatures to design it, and it’s also fitting because it almost seems too amazing to be real.

Abalones, or shellfish, are found in seas all around the world. They have soft, mushy bodies, protected by a hard mineral shell, and researchers wondered just how such a soft core is able to generate and use this solid coating.

Lead author Dr Stefan Szyniszewski, assistant professor of applied mechanics, in the Department of Engineering, Durham University, explains:

“We were intrigued by how the cellular structure of the grapefruit and the tiled structure of mollusc shells can prevent damage to the fruit or the creatures inside, despite being made of relatively weak organic building blocks.”

Abalone shells generally consist of aragonite tiles — a hard, carbonate mineral — interlinked with a bio-polymer that grants them even more resistance. Researchers started from this structure but replaced the materials with industrial ceramics and an aluminum metallic matrix.

Proteus is essentially made from aluminium cells wrapped around ceramic spheres. The design is strong, light, and un-cuttable. It’s not just the fact that the material itself is tough — the design adds an extra twist to it.

Depiction of the material’s interior design. Image credits: Szyniszewski et al / Nature.

You can cut or drill the edges of Proteus, but as you get a bit deeper into the material, the blade will inevitably be blunted, researchers say. The key lies in the ceramic spheres inside the casing that create an interlocking protective mechanism. The vibrational energy is turned against the blade, rendering it ineffective regardless of how much force you add. Not only is Proteus un-cuttable, but it will weaken and destroy the blade that try to cut it.

RelatedPosts

Scientists may have found the first signals of dark matter
Harvard pushes the boundaries and fully 3-D prints a heart-on-a-chip device
Scientists catch human evolution in the making
This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

It’s a form of active, not passive resistance, Szyniszewski explains.

“Essentially cutting our material is like cutting through a jelly filled with nuggets. If you get through the jelly you hit the nuggets and the material will vibrate in such a way that it destroys the cutting disc or drill bit,” he says.

“The ceramics embedded in this flexible material are also made of very fine particles which stiffen and resist the angle grinder or drill when you’re cutting at speed in the same way that a sandbag would resist and stop a bullet at high speed.”

The researchers put their material to the test. They took an angle grinder capable of cutting through steel armor used to protect against explosive mines in less than a minute — it was rendered inoperative by Proteus.

Needless to say, the applications are exciting. For starters, you could finally make a bike lock that’s 100% safe. In North America alone, two million bikes are stolen every year, but Proteus could bring a halt to that. Armor and protective gear are another potential application.

Researchers have applied for a patent so we may see products hitting the marketing relatively soon.

In addition to these direct applications, this could lead the way for an entire new class of materials — one of mythic inspiration. Study co-author Dr. Miranda Anderson, Department of Philosophy, University of Stirling :

“Because the successful resistance of our material system requires it to undergo internal transformations, we chose the name Proteus.

“In 1605, Francis Bacon compared natural materials to Proteus who ‘ever changed shapes’ and he argued that through experimentation we can reveal the metamorphic qualities of materials.”

The study has been published in Scientific Reports.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
2 days ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.