ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

HIV sexual transmission recorded live as the virus crosses the genital mucus membrane

It's strangely beautiful, even though we're talking about a dreaded pathogen.

Tibi PuiubyTibi Puiu
May 8, 2018
in Diseases, Health, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.

For a long time, scientists have presumed that HIV infects hosts through sexual transmission by crossing the genital mucous membranes. However, it’s one thing theorizing a model, and another thing actually seeing the process in action. Now, for the first time, researchers in France have shown live how the virus infects immune system cells in an in-vitro model of the urethral mucosa.

Morgane Bomsel, a molecular biologist at the Institut Cochin (INSERM, CNRS, Paris Descartes University), along with colleagues, introduced an infected T cell into the urethral mucosa. The cell was tagged with a fluorescent-green protein in order to track its progress. Bomsel and colleagues then recorded how the T cell came into contact with the epithelial cell of the membrane when a virological synapse formed.

In the videos, you can see how this encounter spurs production of the infectious HIV virus, seen as green fluorescent dots. Then, like the neon green ray of a blaster gun in some B-grade SciFi movie, the virus sheds across the synapse into the mucosal epithelial cell.

This video shows a top view of an HIV-infected cell (green) in contact with the urethral epithelium and beginning to form a burst of viruses.

Once the virus crosses the epithelial layer via transcytosis, the HIV is engulfed by immune cells called macrophages. After an hour or two, once the virus has been produced and shed, the cell contact ends and the infected T cell moves on.

“Infected cells, once contacting the epithelium as if it is seating comfortably on it, start to spill a string of viruses like a gun does with bullets. After shedding a salve of fluorescent viruses on the mucosa that lasted a couple of hours, the infected cells decided to detach and turn away like a goodbye,” Bomsel told ZME Science.

This video shows a top view of an HIV-infected cell (green) in contact with the urethral epithelium and forming viruses. A virological synapse forms between them and virus is shed by the HIV-infected cell.

The French researcher confessed that it was “beautiful to see these populations of different kind of cells interacting together at the microscopic levels,” even though we’re talking about a pathogen as dangerous as HIV.

RelatedPosts

Countries most in need of HIV treatment are least able to afford it
New revolutionary antibody neutralizes 91% of HIV strains
Scientists stumble upon a vaccine which blocks HIV in monkeys – human trials planned
STEM cells could lead the way towards an effective cure against HIV/AIDS

One of the most surprising findings, though, was that the infected T cells targeted epithelial cells directly above macrophages. This suggests there’s an interaction between the macrophages and the epithelium, which no one had predicted before.

This video shows an HIV-infected cell (green) that has already formed a synapse with an epithelial cell. The virus then starts to shed. When all the virus has been shed, the infected cell leaves.

The macrophages that consumed the HIV continue to produce and shed the virus for 20 days, after which the cells enter a latent, non-virus-producing state. However, the virus is still stored in macrophage reservoirs in the genital tissue. This explains why it’s so challenging to treat HIV. Antiretroviral therapies can keep the HIV reservoirs latent but interrupting therapy will cause the infection to rebound and continue spreading.

In light of these recent findings — which describe a precise mechanism of HIV entry and early establishment of HIV reservoirs in tissue macrophages — perhaps a vaccine active at the mucosa level could avoid an HIV reservoir formation if it is administered early upon infection.

“With our model and the detailed kinetic knowledge of how reservoirs are infected, new drugs that could potentially eradicate these reservoirs might now be established and tested,” said Bomsel.

The team of researchers is already working to find ways of purging the reservoir. They’re testing a “shock and kill” strategy where a macrophage-specific agonist is coupled to mucosal antibodies specific to the HIV surface. The plan is to activate the HIV reservoirs in the macrophages so these become visible to the immune system.

Scientific reference: Cell Reports, Real et al.: “Live imaging of HIV-1 transfer across T-cell virological synapse to epithelial cells that promotes stromal macrophage infection”.

Tags: aidshiv

Share15TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

Trump is ordering a sweeping censorship of science, starting with climate and health

byMihai Andrei
4 months ago
Diseases

Around 1 in 5 under 50s may be living with genital herpes — many don’t even know it

byMihai Andrei
6 months ago
Diseases

We may soon have a working HIV vaccine

byMihai Andrei
12 months ago
Health

The FDA finally approved a condom for anal sex. Here’s why it’s a good thing

byMichelle Petersen
3 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.