ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

The genomes of hibernating mammals could help us fight obesity and metabolic disorders

A new study reports on 364 genetic elements that could be involved in obesity regulation.

Alexandru MicubyAlexandru Micu
November 26, 2019 - Updated on January 26, 2024
in Biology, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research at the University of Utah Health is looking at hibernating animals to find new treatments for obesity and metabolic disorders that afflict millions worldwide.

The white-tailed prairie dog hibernates from mid-October to early March.
Image credits USFWS Mountain-Prairie / Flickr.

Bears and other hibernating animals build up fat when food is plentiful and then live off it in a slumber-like state during winter. Although the level of weight they gain beforehand would be considered dangerously unhealthy for a human, these animals are as fit as ever when they emerge.

The new study looks into the genetic mechanisms that allow such species to fine-tune their metabolism in a bid to gain a better understanding of human health concerns such as obesity or metabolic disorders.

Fatten up then sleep it off

“Hibernators have evolved an incredible ability to control their metabolism,” says Christopher Gregg, Ph.D., associate professor in the university’s Department of Neurology & Anatomy. “Metabolism shapes risks for a lot of different diseases, including obesity, type 2 diabetes, cancer and Alzheimer’s disease. We believe that understanding the parts of the genome that are linked to hibernation will help us learn to control risks for some of these major diseases.”

In some of their previous work, Gregg and co-author Elliot Ferris analyzed mammalian genomes for genetic regulatory elements that could explain some of the more striking biological abilities of certain species, including cancer resistance in elephants or blood clot resistance in dolphins. For the present study, they wanted to determine if hibernating species had similar switches that help them control levels of body fat.

They worked with four hibernating mammals from different habitats worldwide: the thirteen-lined ground squirrel, little brown bat, gray mouse lemur, and lesser Madagascar hedgehog tenrec. Genetic analysis showed that each species had independently evolved short bits of non-coding DNA called “parallel accelerated regions”. These bits of DNA were disproportionately located near genes that have been associated with obesity in humans, they report.

The fat-tailed dwarf lemur (Madagascar) is the only primate species known to hibernate.
Image credits Petra Lahann / Wikimedia.

To verify the link, the team analyzed genes tied to the Prader-Willi Syndrome (PWS), a genetic disorder that affects humans and triggers insatiable appetite and morbid obesity. They report that the genes linked to PWS also show more of the accelerated regions identified in hibernators compared to genes not associated with the syndrome. Based on this finding, the team believes that hibernating species have evolved ways to shut down certain genetic elements related to metabolism and fat control that non-hibernators didn’t. They hope that the results will improve our ability to evaluate and harness such metabolic leverages in humans.

All in all, the authors identified 364 genetic elements that could play a role in hibernation and obesity regulation. They are currently in the process of testing these elements using CRISPR-edited mice in their lab.

RelatedPosts

Canadian Arctic bacterium offers clues to life on Mars
Large volcano in Iceland might be set to erupt, temblors warn
Plastic-hunting barge cleans up world’s rivers
Future devices will rewire themselves thanks to nanomaterial tech

“Our results show that hibernator accelerated regions are enriched near genes linked to obesity in studies of hundreds of thousands of people, as well as near genes linked to a syndromic form of obesity,” Ferris says. Therefore, by bringing together data from humans and hibernating animals, we were able to uncover candidate master regulatory switches in the genome for controlling mammalian obesity.

While they’re focusing on metabolic processes right now, the team believes that the work they’re performing now will lead to new research directions for aging and dementia.

The paper “Parallel Accelerated Evolution in Distant Hibernators Reveals Candidate Cis-Regulatory Elements and Genetic Circuits Regulating Mammalian Obesity” has been published in the journal Cell Reports.

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

byTudor Tarita
32 minutes ago
A photo showing multiple brain scans.
Health

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

byRupendra Brahambhatt
38 minutes ago
Mapping vertical land motion across the New York City area, researchers found the land sinking (indicated in blue) by about 0.06 inches (1.6 millimeters) per year on average. They also detected modest uplift (shown in red) in Queens and Brooklyn. White dotted lines indicate county/borough borders. Credit: NASA/JPL-Caltech/Rutgers University.
Geology

Satellite data shows New York City is still sinking — and so are many big US cities

byFermin Koop
2 hours ago
Animals

How Bees Use the Sun for Navigation Even on Cloudy Days

byMihai Andrei
3 days ago

Recent news

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

September 15, 2025
A photo showing multiple brain scans.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

September 15, 2025
Mapping vertical land motion across the New York City area, researchers found the land sinking (indicated in blue) by about 0.06 inches (1.6 millimeters) per year on average. They also detected modest uplift (shown in red) in Queens and Brooklyn. White dotted lines indicate county/borough borders. Credit: NASA/JPL-Caltech/Rutgers University.

Satellite data shows New York City is still sinking — and so are many big US cities

September 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.