ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

Seismic waves reveal surprisingly widespread blobs near the Earth’s core

Mihai AndreibyMihai Andrei
June 16, 2020
in Geology, News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Our planet’s core might be pockmarked with hot blobs. We don’t know what they are, we don’t know where they’re from, but according to a new study, they’re there.

The blobs in the core. Image credits: Doyeon Kim/University of Maryland.

Ever stopped and wondered just how we know so much about the Earth’s interior? Since we’re kids, we’re told that the Earth has a crust, a mantle, and a core, but how do we know this? The Earth’s radius measures thousands of kilometers, and the deepest hole mankind has ever dug only goes down to 10 km, so it’s not like we actually went there and saw what was going on.

Most of the information we have about the Earth’s structure comes from earthquakes.

When an earthquake takes place, it sends out seismic waves in all directions. These waves are essentially acoustic waves, propagating throughout the planet’s interior. Seismologists detect these waves using specialized stations placed all around the world, and by analyzing these waves, they can understand some of the properties of the planet’s structure, similar to an ultrasound. This is exactly what happened here.

Researchers looked at echoes generated by a specific type of wave. This particular type of wave travels along the core-mantle boundary and is called a shear wave. But looking for a single wave on a seismogram is very challenging — the wave from your earthquake needs to travel to the planet’s core and then back to the surface, where we can detect it. So instead, researchers tried a different approach.

Seismogram example from the 1906 San Francisco earthquake.

Using a machine-learning algorithm, they analyzed 7,000 seismograms from hundreds of big earthquakes around the Pacific Ocean from 1990 to 2018, looking for similarities and patterns in the data. A smudge in the seismograph might be a coincidence, but the same smudge in hundreds of seismograms has meaning — and in this case, researchers found quite a few smudges.

Correlation in smudges on different seismographs. Image credits: Doyeon Kim

The findings suggest that there are widespread areas around the Earth’s core where seismic waves travel at a lower-than-normal velocity. These low-velocity areas are thought to represent hot, molten blobs — and according to this study, the core is much more blobby than we thought.

RelatedPosts

Largest man-made Earthquake comes after fracking activity
New gravity earthquake detection method might buy more time for early warnings
6.9 earthquake hits California, followed by aftershocks
Italian earthquake kills at least 20, destroys entire town

In particular, the team found a lot of these hot blobs under the Marquesas Islands, a group of volcanic islands about halfway between South American and Australia.

“We were surprised to find such a big feature beneath the Marquesas Islands that we didn’t even know existed before,” said geologist Vedran Lekić of the University of Maryland.

“This is really exciting, because it shows how the algorithm can help us to contextualise seismogram data across the globe in a way we couldn’t before.”

The algorithm itself shows great promise. It’s called Sequencer and was designed to run through large astronomical datasets looking for patterns. Now that researchers have adapted it to different types of data, and this first find is already exciting.

“We were surprised to find such a big feature beneath the Marquesas Islands that we didn’t even know existed before,” said Vedran Lekić, an associate professor of geology at UMD and a co-author of the study. “This is really exciting, because it shows how the Sequencer algorithm can help us to contextualize seismogram data across the globe in a way we couldn’t before.”

Researchers knew that some of these can exist, but they turned out to be much more common than expected — potentially hinting that they may also be present in other areas of the planet’s interior.

“We found echoes on about 40% of all seismic wave paths,” Lekić said . “That was surprising because we were expecting them to be more rare, and what that means is the anomalous structures at the core-mantle boundary are much more widespread than previously thought.”

In addition, since the Sequencer algorithm has already proven to be quite robust, researchers say that it could potentially be adapted to other types of research as well.

“Exploring a large dataset with the Sequencer enables a data-driven analysis of seismic waveforms without any prior expectations. We anticipate this approach to be useful for many types of datasets beyond seismograms,” the researchers conclude.

Journal Reference: D. Kim, V. Lekić, B. Ménard, D. Baron and M. Taghizadeh-Popp. Sequencing Seismograms: A Panoptic View of Scattering in the Core-Mantle Boundary Region. Science, 2020 DOI: 10.1126/science.aba8972

Tags: earthearthquakeinteriorSeismics

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

GMT029_06_47_Don Pettit_OST FWD dragon
Great Pics

An Astronaut Just Captured a Jaw-Dropping Photo of Earth and the Milky Way from Space

byTibi Puiu
4 months ago
OLYMPUS DIGITAL CAMERA
Environment

The Japanese Mayor Who Built a Floodgate No One Wanted — and Saved His Town

byMihai Andrei
4 months ago
Geology

Seemingly sudden earthquakes may be preceded by a slow creep. Could this be the key to earthquake prediction?

byTibi Puiu
5 months ago
Geology

Earth Might Have Had a Ring System Like Saturn Millions of Years Ago

byTibi Puiu
6 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.