Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Geology

Scientists examine the scars left by huge asteroid 65 mil. years ago

Around 65.5 million years ago a 10-km wide asteroid crashed into the Yucatan Peninsula in Mexico, suddenly altering all life on the planet.

Tibi Puiu by Tibi Puiu
March 7, 2016
in Geology, News

Around 65.5 million years ago a 10-km wide asteroid crashed into the Yucatan Peninsula in today’s Mexico, suddenly altering all life on the planet. The giant asteroid carved out immense quantities of debris that, aided by wind, traveled across the atmosphere blocking the sun. As if this wasn’t enough, Berkeley research suggests the planet was going through “dramatic climate variation” in the millions of years preceding the event, such as very cold periods in the tropical environment that the dinosaurs were used to.

The asteroid impact was likely the last straw. All dinosaurs went extinct, along with 60 to 80 percent of all life on Earth.

Artist impression of Chicxulub. Credit: NASA
Artist impression of Chicxulub. Credit: NASA

This tragic event has remained etched permanently in the planet’s geological history, through a band called the K-T Boundary, which separates the Cretaceous and Tertiary periods in geologic history. That and the gaping scar of the 180-kilometer-wide crater rim called Chicxulub.

Oddly enough, the crater was discovered only twenty years ago. Previously, scientists called to the attention of a  a thin layer of iridium that could be found in rocks all over the world and dated around the time of the dinosaurs’ demise. This material is extraterrestrial, typically found in asteroids, but also in some volcanic ejections. In 1991,  Alan Hildebrand, a geologist at the University of Calgary in Canada, found shocked quartz and a layer of iridium-enriched dust in samples collected in the 1950s by Mexican geologists looking for oil at the Chicxulub and this ultimately led to finding the crater.

In the 25 years since the asteroid’s impact ground zero was pinpointed scientists have learned a lot about how this event altered the planet. There is only so much you can learn from near surface excavations and models, though. Now, a ground breaking project aims to drill 1,500 meters inside the crater. Cores retrieved from the site will help scientists reconstitute more precisely how the impact took place, how the planetary system responded and also how life rebounded in the aftermath.

The project is a collaboration between the European Consortium for Ocean Research Drilling (part of the International Ocean Discovery Program) and the International Continental Scientific Drilling Program.

Just week from now, a special vessel will anchor 30 km offshore from Chicxulub. In these 17m deep waters, the vessel will deploy three pylons which will rise above the water. In this stable configuration, a diamond-tipped drill will pierce right through the peak ring of the crater —  a ring of mountainlike structures around the center of the crater. Samples will be taken every three meters, a process which is expected to take two months.

Although offshore drilling can be prohibitively expensive, it sidelines some of the hurdles the project could have faced by drilling on site, like environmental permits and the poor access roads.

Researchers expect to first cut through 500 meters of limestone deposited by the ocean since the impact took place. As they delve deeper, fewer fossilized shell-bearing species should be encountered since life was barely recovering from the impact. Since there was so much CO2 spewed into the atmosphere, the waters around the time of the impact should have been highly acidic. This should be seen evident from whatever fossils they bring back in the cores.

One big question mark this project will help answer is how the peak ring itself formed. The leading model at this time is that granite rebounded temporarily acting like a liquid (i.e. like the water from a lake hit by a stone) to form a high tower. This tower last for a couple of minutes until it collapsed and collided with  material slumping in from the rims. “We’ve never gotten a rock back from a peak ring to know if that’s correct,” said Sean Gulick, of The University of Texas at Austin Institute for Geophysics.

The researchers also hope to find details about the process that weakened the granite of the crust to get it to flow like a liquid, Gulick noted. “We don’t understand that process,” he said. Remote sensing suggests the peak ring granite is less dense — a sign that the rock is porous. It’s very likely that hot water oozed through these nooks and crannies, trapping microbes. Microbes could be found still living in these fractures and by sequencing their DNA scientists could find who knows what. We could learn not only how life went extinct, but also how new life thrived. There are winners and losers to any story.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Scientists examine over 1,000 chemicals from fracking fluids: many linked to reproductive or development toxicity
  2. A huge asteroid might have ended the “Snowball Earth” era 2.2 billion years ago
  3. The Moon’s dark spots were caused by a huge asteroid impact billions of years ago — on the other side
  4. Mussel-glue-and-protein balm could spell the end of scars forever
  5. Scars left by glaciers show Antarctic ice retreat

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW