Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Stretchy, bendy electronic circuits paves way to new wearable tech, bioimplants

They're bending the rules!

Alexandru Micu by Alexandru Micu
June 15, 2018
in Electronics, News, Science, Tech

Elastic circuits that can bend and stretch are here — and they mean business.

Bendy circuit.
LED circuits interconnected by MPC can undergo repeated bending, twisting, and stretching.
Image credits Tang et al., 2018, iScience.

Chinese researchers have developed a novel hybrid material — part elastic polymer, part liquid metal — that can bend, stretch, and still work as an electric circuit. The material can be cast in most two-dimensional shapes and, based on the polymer used, can be completely non-toxic.

Circuits, with a twist

“These are the first flexible electronics that are at once highly conductive and stretchable, fully biocompatible, and able to be fabricated conveniently across size scales with micro-feature precision,” says senior author Xingyu Jiang.

“We believe that they will have broad applications for both wearable electronics and implantable devices.”

The material the team developed is known as a metal-polymer conductor (MPC). As the name suggests, it’s a combination of two components. The metal bit of the mix carries electric charges — handling the ‘circuit’ part. However, the team didn’t use materials commonly seen in circuits, such as copper, silver, or gold, but settled on gallium and indium. These two metals form a thick fluid that’s a good electric conductor — meaning the circuits can ‘flow’ and still function while accommodating any stretching. The second component is a silicone-based polymer. This imparts mechanical resilience to the circuit, keeping the fluid ‘wires’ all neat and orderly.

Jiang’s team found that embedding globs of this gallium-indium mixture into the polymer substrate created a mechanically-strong material that can function as a circuit. Close-up, the MPC looks like a collection of metal islands in a sea of polymer. A liquid metal mantle runs underneath these islands to ensure conductivity is maintained at all times.

The team successfully trialed different MPC formulations in a wide range of applications — from sensors in wearable keyboard gloves to electrodes embedded in cells. There’s a huge range of applications these MPCs can be used for, they note, limited only by their particular polymer substrate.

“We cast super-elastic polymers to make MPCs for stretchable circuits. We use biocompatible and biodegradable polymers when we want MPCs for implantable devices,” says first author Lixue Tang.

“In the future, we could even build soft robots by combining electroactive polymers.”

The team is also confident that the MPC manufacturing method they developed — it involves screen printing and microfluidic patterning — can be used to produce any two-dimensional geometry. It can also handle different thicknesses and electric properties — which are a function of metal concentration in the circuits. This versatility could allow researchers to rapidly develop flexible circuits for a wide range of uses, the team notes, from wearable tech to bioimplants.

“We wanted to develop biocompatible materials that could be used to build wearable or implantable devices for diagnosing and treating disease without compromising quality of life, and we believe that this is a first step toward changing the way that cardiovascular diseases and other afflictions are managed,” says Jiang.

The paper “Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices” has been published in the journal iScience.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Stretchy electronic circuits mimic nature and allow for flexible computers
  2. Heat-free metallic print can form electronic circuits on soft surfaces (flowers, gelatin)
  3. Researchers print electronic circuits on mushrooms
  4. Electronic textiles could turn clothes into wearable electronics
  5. Scientists manipulate pigment in our skin to enable the next generation of bioimplants
Tags: CircuitselectronicsFlexibleGalliumIndiumpolymer

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW