ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Feisty bees make more potent venom, which makes for better medicine

Temperature and geographical location of the hive also have an effect.

Alexandru MicubyAlexandru Micu
August 16, 2021 - Updated on January 19, 2023
in Animals, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Not all bee venom is made equal, a new study explains. According to the findings, ‘angry’ bees produce a more potent mixture. Bee venom is known for its benefits against degenerative and infectious diseases such as Parkinson’s and osteoarthritis.

Image credits David Hablützel.

This study is the first to analyze the protein diversity in samples of venom retrieved from western honeybees (Apis mellifera ligustica) in southern-western Australia. Surprisingly, they explain, bees that react with more intensity to stimuli from the researchers — in essence, more aggressive bees — produced a more protein-diverse venom.

Sting like a bee

“We found there are 99 bee venom proteins of which about one third had been formerly identified. The more proteins found in the venom, the higher the potential quality and effect,” said lead researcher Dr. Daniela Scaccabarozzi from the Curtin University School of Molecular and Life Sciences. “To understand the protein diversity of bee venom and find out what drivers impacted this, the multidisciplinary research team looked at a range of factors including the behavioral patterns of the bees.

The team worked with samples from 25 hives spread across a 200 km-latitudinal range in Southwestern Australia. The venom was analyzed using a mass spectrometer, which allowed the researchers to accurately measure levels of individual proteins. They then looked at how levels of these proteins varied with environmental and behavioral factors.

As far as behavioral factors are concerned, protein diversity levels seen in venom was associated with how active or docile individual bees were, the team reports. Bees that reacted more intensely to stimuli during the trials secreted “a richer, more protein-dense bee venom”, they add.

“The overall quantity of venom released by bees relies on the alarm pheromone secretion that induces other bees to aggressively react by stinging. This may be a result of changes in genetics that can provoke aggression in bees,” Dr. Scaccabarozzi explains.

Beyond genetic factors, temperature also seems to have an effect on the protein makeup of bee venom. High temperatures are especially detrimental to bee activity both inside and outside of the hive, according to the authors. Out of the 25 hives that they tested, the team found that those at sites with higher overall temperatures showed the lowest amounts of venom production.

“This met our expectation that seasonal factors do cause a change in the protein profile of bee venom. The optimal range for high protein diversity varies from 33 to 36 degrees Celsius,” Dr. Scaccabarozzi said.

Geographical location and the flowering stage of local flowers when harvested by the bees further impacted the composition of venom in each hive.

RelatedPosts

Researchers publish the ultimate map of bee diversity, but there’s still much we don’t know
Bees are facing a massive survival challenge. Could AI help them?
Crippled bee population might be saved by super breeding
Bee numbers dropping at incredible rates

While research like this might seem inconsequential to most of us, it does actually have practical applications. Beekeeping is big business, and bee venom is quite the hot commodity — one gram of it can command up to US$300. Furthermore, the medicinal applications of bee venom are dependent on its quality. Knowing what factors influence this will allow us better quality and more reliable use of venom.

That being said, Dr. Scaccabarozzi says we need more research to help beekeepers ensure a constant quality of venom from their hives. This is especially important for clinical and therapeutic uses. Designing cost-effective harvesting strategies that maintain the quality of the venom would also go a long way towards establishing it for medical uses, the team adds.

The paper “Factors driving the compositional diversity of Apis mellifera bee venom from a Corymbia calophylla (marri) ecosystem, Southwestern Australia” has been published in the journal PLOS ONE.

Tags: beevenom

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

Bees are facing a massive survival challenge. Could AI help them?

byFarnaz Sheikhi
1 month ago
Animals

Queen bees can hibernate underwater for several days without drowning

byMihai Andrei
3 months ago
Biology

Plants can “hear” pollinators and make more nectar when there’s buzzing around

byMihai Andrei
3 months ago
Animals

Big Boy Is Here and He’s the Most Venomous Spider in the World

byTibi Puiu
7 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.