ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Synthetic ‘living crystals’ might offer insights into origin of life

Tibi PuiubyTibi Puiu
February 1, 2013 - Updated on February 12, 2024
in Chemistry, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists at  New York University have created a type of synthetic particles that can bind and assemble into clusters, similar to how flocks of birds or schools of fish organize themselves in complicated patterns. Self-assembling materials are far from being new, but what distinguishes this new research is that the particles eventually organize themselves in what the authors call “living crystals”.

Self-assembly is what allows DNA to bond and form nanotubes or proteins to gather and form a helical virus coat. In a sense, too, self-assembly is what makes birds or fish join together in various patterns and form flocks or schools respectively.

bird-flock For their research, the scientists wanted to maybe find what the underlying physical principle behind self-organizing collective behaviors. By building their own synthetic particles that join together in complicated collective behavior, all from the simple properties of each individual particle, the scientists managed to build an interesting non-equillibrium model to study; one that isn’t subjected to external factors – like social behavior in the case of flocks of birds. What’s interesting is that the particles the New York University researchers built form a “living crystal” that moves, swirls, and adjusts to heal cracks.

“There is a blurry frontier between active and alive,” said biophysicist Jérémie Palacci of New York University. “That is exactly the kind of question that such works raise.”

Each particle is made  from a microscopic cube of hematite, a compound consisting of iron and oxygen, sheathed in a spherical polymer coat. One corner is left exposed. When such a particle is exposed to blue light, this certain wavelength causes hydrogen peroxide to decompose on the exposed portion of the metallic cubes. As the hydrogen peroxide breaks down, concentration gradients form, which guide particles to travel along these gradient lines. Eventually, the particles aggregate into crystals.

Can you synthesize life?

These crystals rotate, crack, and reorganize to heal defects – like a sort of living crystal; something that struck scientists rather profoundly. The process only stops once the blue light is turned off.

“Here we show that with a simple, synthetic active system, we can reproduce some features of living systems,” Palacci said. “I do not think this makes our systems alive, but it stresses the fact that the limit between the two is somewhat arbitrary.”

Typically scientists today define life has having metabolism, mobility, and the ability to self-replicate. All are in check besides self-replication, but one can only wonder – when life first sparked on our planet, wasn’t it actually the product of millions of years of micro-assemblies and out of equilibrium physical processes?

RelatedPosts

Researchers make 32 differently-shaped DNA crystals – is this the Future of Nanotech?
What is the Standard Model of Particle Physics?
Drag-and-drop and synthetic DNA self-assembly makes drug design easier
Large Hadron Collider creates mini big bangs and incredible heat

We’re still far away from being able to answer such a question, in the meantime however Palacci and colleagues are busy replicating their findings with an induced magnetic field. Another interesting lab  particle currently under development isn’t mobile, but it has a metabolism and is self-replicating. How long before all three come together?

Findings were published in the journal Science.

source

Tags: DNA self-assemblyparticles

Share2TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Cosmology

What is the Standard Model of Particle Physics?

byRob Lea
4 years ago
Researchers have achieved 32 different–shaped crystal structures using the DNA–brick self–assembly method. (Photo : Harvard's Wyss Institute)
Materials

Researchers make 32 differently-shaped DNA crystals – is this the Future of Nanotech?

bylivia rusu
11 years ago
A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs
Health

Drag-and-drop and synthetic DNA self-assembly makes drug design easier

byTibi Puiu
13 years ago
Representation of a quark-gluon plasma
Physics

Large Hadron Collider creates mini big bangs and incredible heat

byMihai Andrei
15 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.