ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Key findings help unravel journey from inanimate chemistry to life

In the beginning, the Earth's surface was a lifeless, hot, but chemically rich place. In these harsh conditions, the first amino acids synthesized from inorganic compounds, and from them, proteins formed. They built the first single cells, which went on to form plants and animals. Recent research helped us understand the process that created amino acids, and there is a widespread consensus in the scientific community as to the path cells took to evolve to complex life as we know it today.

Alexandru MicubyAlexandru Micu
June 2, 2015
in Biology, Chemistry, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

In the beginning, the Earth’s surface was a lifeless, hot, but chemically rich place. In these harsh conditions, the first amino acids synthesized from inorganic compounds, and from them, proteins formed. They built the first single cells, which went on to form plants and animals. Recent research helps us understand the process that created amino acids, and there is a widespread consensus in the scientific community as to the path cells took to evolve to complex life as we know it today. But there is a missing link in the chain of events that ties lifeless to life: how and why did amino acids form the proteins that underpin the functions of every cell?

University of North Carolina scientists Richard Wolfenden and Charles Carter have shed new light on how the building blocks came together to form life some 4 billion years ago.

“Our work shows that the close linkage between the physical properties of amino acids, the genetic code, and protein folding was likely essential from the beginning, long before large, sophisticated molecules arrived on the scene,” said Carter, professor of biochemistry and biophysics at the UNC School of Medicine. “This close interaction was likely the key factor in the evolution from building blocks to organisms.”

Their findings, published in companion papers in the Proceedings of the National Academy of Sciences, contravene the traditional yet problematic “RNA world” theory, which posits that RNA -implicated in various biological roles in coding, decoding, regulation, and expression of genes- came into existence from the primordial pool, created the first simple proteins, peptides, and thus led to the creation of the first cells; in fact, they argue, it’s just as likely that peptides catalyzed the creation of RNA as the polymeric molecule was to lead to the formation of these simple proteins.

A strand of RNA Image via: miltenyibiotec.com
A strand of RNA, the first records of genetic information.
Image via: miltenyibiotec.com

The scientific community places the last universal common ancestor of all life on Earth, dubbed LUCA, at about 3.6 billion years ago. LUCA was most likely a single-cell organism, had a few hundred genes which stored the blueprints for DNA replication, protein synthesis, and RNA transcriptions. It had the basic components that modern organisms have, such at lipids. In other words, it had all the traits we expect to find in complex life today. After LUCA, it’s relatively easy to see how modern life evolved. But there is little hard evidence of how LUCA came into being.

We know a lot about LUCA and we are beginning to learn about the chemistry that produced building blocks like amino acids, but between the two there is a desert of knowledge,” Carter said. “We haven’t even known how to explore it.”

Dr. Wolfenden’s and Dr. Carter’s research aims to bridge the knowledge gap. It creates a model where RNA did not have to just pop into existance, and shows how even before there were cells, it seems more likely that there were interactions between amino acids and nucleotides that led to the co-creation of proteins and RNA.

“Dr. Wolfenden established physical properties of the twenty amino acids, and we have found a link between those properties and the genetic code,” Carter said. “That link suggests to us that there was a second, earlier code that made possible the peptide-RNA interactions necessary to launch a selection process that we can envision creating the first life on Earth.”

In order to function properly, proteins must fold in certain ways. The first PNAS paper, led by Wolfenden, shows that both the polarities of the amino acids (how they arrange themselves between water and oil) and their sizes help explain the complex process of protein folding – how a chain of connected amino acids arranges itself to form a particular 3-dimensional structure that has a specific biological function.

“Our experiments show how the polarities of amino acids change consistently across a wide range of temperatures in ways that would not disrupt the basic relationships between genetic coding and protein folding,” said Wolfenden, Alumni Distinguished Professor of Biochemistry and Biophysics.

This is an important piece of information, as when life started to form, in early-Earth conditions, temperatures were much hotter than when the first plants and animals appeared. If amino acid interaction changed with temperature in such a way as to interfere with genetic coding, the system would have stopped working when the planet cooled down.  Life could not had evolved based on these principles.

RelatedPosts

Mars may have been habitable more than 4.4 billion years ago
Ancient volcanism shows our emissions can trigger a mass marine extinction
Scientists find CRISPR-like system in animals: a new way to edit the genome
Scientists uncover new insights into the origin of life

A series of lab experiments with amino acids showed that two properties, namely size and polarity of amino acids, were necessary but also sufficient to explain how they behaved in folded proteins and that the relationship between the two held at the temperatures Earth had 4 billion years ago.

In their second PNAS paper, lead by Carter, they analyse how aminoacyl-tRNA synthetases recognized the enzymes that translate the genetic code, named transfer ribonucleic acid or tRNA. It shows that each one of the two ends of the L-shaped tRNA molecule has specific rules on what amino acid to tie to. The end that carried the amino-acid selects the molecule based on size. The other end, named an anticodon, selects it based on polarity:

“Think of tRNA as an adapter,” Carter said. “One end of the adapter carries a particular amino acid; the other end reads the genetic blueprint for that amino acid in messenger RNA. Each synthetase matches one of the twenty amino acids with its own adapter so that the genetic blueprint in messenger RNA faithfully makes the correct protein every time.”

Translating the genetic code is the nexus connecting pre-biotic chemistry to biology”, he added.

Their findings imply that the relationships between tRNA and the sizes and polarities of amino acids were crucial during the Earth’s early days. And basing on Carter’s work with the active cores of tRNA synthetases, called Urzymes, it seems likely that selection by size preceded selection after polarity. Because of this ordered selection, the earliest proteins did not have to fold into unique shapes, which evolved later. This would help explain two paradoxes: how complex structures arose from simple conditions, and how biology divided the work between proteins and nucleic acids, two very different structures.

The structure of DNA, RNA, and proteins.
Image via: exploringorigins.org

“The fact that genetic coding developed in two successive stages — the first of which was relatively simple — may be one reason why life was able to emerge while the earth was still quite young,” Wolfenden noted.

“The collaboration between RNA and peptides was likely necessary for the spontaneous emergence of complexity,” Carter added. “In our view, it was a peptide-RNA world, not an RNA-only world.”

An earlier structure, that would enable coded peptides to bind RNA, would have provided a decisive selective advantage. This simple system would then undergo a natural selection process, paving the way for new and more biological forms of evolution.

 

 

 

 

Tags: Amino Acidslifeproteinsrna

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

landscape on saturn's moon titan
Chemistry

Scientists Just Showed How Alien Life Could Emerge in Titan’s Methane Lakes

byMihai Andrei
1 month ago
Biology

These 18 Million-Year-Old Teeth Contain the Oldest Proteins Ever and They Came From Giant Prehistoric Beasts

byTudor Tarita
1 month ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago
Biology

Researchers can’t rule out the possibility of life existing on Titan

byMihai Andrei
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.