ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

The Bombardier Beetle Packs a Hot Machine Gun

Many beetles have defense mechanisms which involves foul chemicals squirting from their abdomens, but bombardier beetles have taken it to the next level. Researchers from MIT, the University of Arizona, and Brookhaven National Laboratory wanted to see how it works, so they studied the bombardier beetle and figured it out. The research is published in Science.

Mihai AndreibyMihai Andrei
May 1, 2015 - Updated on February 22, 2019
in Biology, Chemistry, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Toy-inspired “Buckliball” paves the way towards a new class of engineering structures
MIT develops new, cheap, fast Covid-19 test, is awaiting approval from FDA
Brain glucose might power the future’s tiny medical implants
MIT machine makes videos out of still images to predict what happens next

Many beetles have defense mechanisms which involves foul chemicals squirting from their abdomens, but bombardier beetles have taken it to the next level. Researchers from MIT, the University of Arizona, and Brookhaven National Laboratory wanted to see how it works, so they studied the bombardier beetle and figured it out. The research is published in Science.

CHARLES HEDGCOCK, © WENDY MOORE

“Their defensive mechanism is highly effective,” Arndt says, making bombardier beetles “invulnerable to most vertebrates, and invertebrates”—except for a few very specialized predators that have developed countermeasures against the noxious spray.

It’s a pretty good life if you’re a bombardier beetle – you have almost no natural predators, you can survive on every continent except for Antarctica and if someone annoys you, you can just send a foul jet at them with remarkable precision. The liquid these beetles eject is called benzoquinone, and is actually a fairly common defensive agent among insects, Arndt says. But what makes bombardier beetles so special is that they can superheat it first, and then send it out in a pulsating jet. What’s more, they can aim it precisely well. The new, multidisciplinary study wanted to find out how they can do this.

“Understanding how these beetles produce – and survive – repetitive explosions could provide new design principles for technologies such as blast mitigation and propulsion,” said Wendy Moore, one of the lead authors of the study, from the University of Arizona.

The key is that they synthesize the chemical at the moment they want to use it, mixing two chemical precursors in a protective chamber in their hindquarters. As the two chemicals combine, they give out a lot of heat, which is absorbed by the jet. The process also generates the pressure needed to eject it, in a series of pulses.

“Twenty-five years ago, a team of scientists from Cornell University and MIT discovered that each blast from the bombardier beetle is actually a series of extraordinarily fast micro-pulses,” Moore said.


The new study found, which took X-Ray images of the beetles’ abdomens, revealed that the chemical is formed through a passive process, and not active muscle contraction, as was previously believed.

“By having a pulsed delivery, these small beetles produce a relatively large amount of defensive spray, which they can aim precisely and with great force and speed,” Moore said. “This is truly one of the most remarkable and elegant defensive mechanisms documented to date,” she added.

Understanding the beetles’ ability to create these violent processes and survive them is not only interesting in itself, but may lead to the design of new blast-protection systems; this study shows how the sophisticated and specialized biological design of the system works to simultaneously achieve defensive and protective functions. It’s also, as the researchers point out, one of the most elegant mechanisms in the natural world.

Journal Reference: Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation www.sciencemag.org/lookup/doi/10.1126/science.1261166

Tags: bombardier beetlemitUniversity of Arizona

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Science

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

byMihai Andrei
3 months ago
Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
3 months ago
Future

Hair-thin silk fabric cancels out noise and creates quiet spaces anywhere

byTibi Puiu
1 year ago
News

This laser link has achieved the fastest data transfer from space to date. It’s 1,000 times faster than before

byJordan Strickler
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.