ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

One genetic change 3 million years ago made our brains big — and won us the world

I'm not complaining.

Alexandru MicubyAlexandru Micu
June 4, 2018 - Updated on July 19, 2023
in Biology, Mind & Brain, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Two research teams have uncovered the gene family that allowed us to evolve our impressively large brains.

Skull and brain.
A human skull overlaid with an illustration of the human brain.
Image credits Fiddes et al. / Cell

Compared to other organisms on the planet, our globs of gray matter are unusually big. That’s actually quite a fortunate turn of events since we owe them our success as a species today. But why we have such big brains is a different question altogether — one that two recently-published papers attempt to answer.

The two teams identified a genetic family christened NOTCH2NL as the likely catalyst for the evolution of our brains over the last 3 million years. The gene, which is located in a part of the genome previously linked to neurodevelopmental disorders, seems to play an important role in human cortex development by delaying stem cell specialization into neurons — in the long run, this results in more overall neurons being developed. The gene is also exclusive to humans (lacking even in our closest relatives), and is heavily expressed in stem cells in the cerebral cortex.

Moving up a notch

“Our brains got three times as big primarily through the expansion of certain functional areas of the cerebral cortex, and that has to be a fundamental substrate for us becoming human. There’s really no more exciting scientific question that I can think of than discovering and decoding the mysterious genetic changes that made us who we are,” says bioinformatician David Haussler, co-senior author of one of the papers.

Haussler’s team was busy comparing genes expressed during brain development in humans and macaques when they discovered that only human cells sported NOTCH2NL. Further testing revealed that orangutans also lacked this gene and that our closest living relatives — gorillas and chimps — only carry incomplete, inactive versions. After piecing together as much of its evolutionary history as they could, the team believes that it was borne out of a process known as gene conversion. They write that the process was likely applied to repair a non-functional version of NOTCH2NL, which itself first emerged as a partial duplication (i.e. a mutation) of the neurodevelopmental gene NOTCH2.

The team believes this repair took place some 3 to 4 million years ago — which is right around the time that we see human fossils with increasing brain sizes. After it was repaired, but before we diverged from our common ancestor with Neanderthals, NOTCH2NL was duplicated two more times, the team adds.

The other team, led by developmental biologist Pierre Vanderhaeghen found NOTCH2NL while searching for human-specific gene activity during fetal brain development.

Brains gains

“One of the holy grails of researchers like us is to find out what during human development and evolution is responsible for a bigger brain, particularly the cerebral cortex,” Vanderhaeghen says. “Given the relatively fast evolution of the human brain, it is tempting to speculate that newly evolved, human-specific genes may help shape our brain in a species-specific way.”

Because the genes Vanderhaeghen’s team was searching for are generally described known and hard to distinguish from the variants in other species (which are more common), the team developed a new RNA sequencing analysis method for specific and sensitive detection of human-specific genes in fetal tissue. They uncovered 35 genes unique to us that are active during fetal brain development — including the NOTCH2NL family.

RelatedPosts

Humans and Neanderthals diverged at least 800,000 years ago, new teeth study shows
Male and Female brains are not different, MRI scans suggest
New study highlights vitamin E’s essential role in brain development
Mad genius reddux: study suggest link between psychosis and creativity

What set it apart from the rest is the important hole NOTCH2 plays in controlling whether cortical stem cells produce neurons or regenerate more stem cells, they explain. Artificially expressing NOTCH2NL increased the number of progenitor stem cells in the brains of mice embryos. Further tests with an in-vitro cortical development model based on human pluripotent stem cells revealed that NOTCH2NL can substantially expand the number of cells in the culture, which then generate more neurons.

“From one stem cell, you can either regenerate two progenitor cells, generate two neurons, or generate one progenitor stem cell and one neuron. And what NOTCH2NL does is bias that decision in a slight way towards regenerating progenitors, which can later go on to make more neurons. It’s a small early effect with large late consequences, as often happens with evolution,” Vanderhaeghen says.

When NOTCH2NL was removed from the genomes of human stem cells used to grow patches of tissue, differentiation occurred faster but resulted in fewer final neurons.

“If you lose NOTCH2NL, it leads to premature differentiation of cortical stem cells into neurons, but at the same time the very important stem cell pool gets depleted,” says Jacobs.

There is still a lot of things we don’t understand about NOTCH2NL. Haussler’s team notes that they were only able to look at the genomes of a small sample of patients and that their models couldn’t address the later stages of cortical development — when NOTCH2NL might become even more important.

For now, however, it seems clear that NOTCH2NL had a key role to play in the evolution of the human brain. And, in a way, it could offer part of the answer to that age-old question. We’re here, in part, because a gene mutated a few million of years ago — and it made us smart.

The papers “Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis“, and “Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation” have both been published in the journal Cell.

Tags: BigbrainDevelopmentevolution

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago
Health

Older Adults Keep Their Brains up to Two Years ‘Younger’ Thanks to This Cognitive Health Program

byTudor Tarita
2 weeks ago
Geology

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

byTudor Tarita
2 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.