ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Paying attention shuts down ‘brain noise’ that isn’t related to what we’re looking for

You can miss the forest for the trees, or the trees for the forest.

Alexandru MicubyAlexandru Micu
March 20, 2019
in Mind & Brain, News, Psychology, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research sheds light into what our brains do as we try to pay attention to something.

Cat paying attention.
It seems that the price for paying attention is missing the big picture.
Image via Pixabay.

Attention has long been believed to function by turning down brain ‘noise’ — in other words, it amplifies the activity of some neurons while suppressing others. A new study comes to confirm this view by showing how too much background brain noise can interrupt focused attention and cause the brain to struggle to perceive objects.

Divert energy to attention circuits!

“This study informs us about how information is encoded in the electrical circuits in the brain,” says Salk Professor John Reynolds, senior author of the paper. “When a stimulus appears before us, this activates a population of neurons that are selective for that stimulus.”

“Layered on top of that stimulus-evoked response are large, low-frequency fluctuations in neural activity.”

It’s laughably easy to miss something you’re not looking for. You’re probably aware of the gorilla experiment / selective attention test (if not, here it is). In short, when most people were asked to pay attention to two groups of people — one in black clothes, the other in white clothes — passing a ball among them and count the number of times this ball passed from one group to the other, they became oblivious to a man dressed as a gorilla walking among the players.

More than just being funny, the experiment shows how our brains can ignore visual information when it isn’t relevant to a certain task we’re trying to perform. However, this process governing our perception and ability to pay attention to our surroundings is poorly understood. In an effort to patch this blind spot in our knowledge, the team set out to find whether background neural activity can interrupt focused attention, and cause our brains to struggle with perceiving certain objects.

Previous work from Reynolds’ lab found that when attention is directed upon a certain stimulus, low-frequency neural fluctuations (brain noise) is suppressed. The findings also suggested that not filtering out these fluctuations should impair our perception and ability to pay attention.

To find whether this is the case, the team used optogenetics — a technique that can activate or inactivate neurons by shining lasers onto light-activated proteins. They directed a low-frequency laser to the visual brain regions in animals in order to replicate brain noise. Then, they measured how this impacted the animals’ ability to detect a small change in the orientation of objects shown on a computer screen.

As predicted, the induced brain noise impaired the animals’ perception compared to controls. The team then repeated the experiment using a different laser-burst pattern to induce high-frequency fluctuations (a frequency that attention, as far as we know, doesn’t suppress). Consistent with their initial theory, this had no effect on the animals’ perception.

RelatedPosts

Samsung wants to “copy/paste” your brain into a 3D chip
Virtual reality for rats shows how different brain functions cooperate during navigation
What causes phantom limb — it’s all in the brain
Men and women’s brains are hard wired differently, study shows

“This is the first time this theoretical idea that increased background noise can hurt perception has been tested,” says first and corresponding author Anirvan Nandy, assistant professor at the Yale University School of Medicine and former Salk researcher. “We’ve confirmed that attention does operate largely by suppressing this coordinated neuron firing activity.”

“This work opens a window into the neural code, and will become part of our understanding of the neural mechanisms underlying perception. A deeper understanding of the neural language of perception will be critical in building visual prosthetics,” Reynolds adds.

The team plans to examine how different types of cells in the visual networks of the brain take part in this process. Hopefully, this will give us a better idea of the neurological processes that govern attention and perception.

The paper “Optogenetically induced low-frequency correlations impair perception” has been published in the journal eLife.

Tags: ActivityAttentionbrainNeuralnoise

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
5 days ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
2 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Health

Scientists Just Discovered What Happens in Your Brain During an Eureka Moment

byTudor Tarita
3 weeks ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.