ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Artificial synapses work together with biological brain cells

The hybrid system forms connections that mimic how learning occurs in the brain.

Tibi PuiubyTibi Puiu
June 15, 2020
in Mind & Brain, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
A  2017 photo of Alberto Salleo and Scott Keene characterizing the electrochemical properties of a previous artificial synapse design. Credit: L.A. Cicero/Stanford News Service.

Scientists at Stanford University have devised a biohybrid system that allows artificial synapses to communicate with living brain cells. What sets it apart from other brain-machine interfaces is its ability to respond to chemical signals, rather than electrical cues. As such, this is an important leap forward in scientists’ efforts to mimic the brain’s efficiency and natural learning processes.

Machine synapses and biological brain cells

The researchers built upon their previous work from 2017, when they developed artificial synapses made of two soft polymer electrodes, separated by a gap filled with an electrolyte solution. Experiments later showed that such devices could be connected in arrays, mimicking the way real, biological synapses process and store information.

In the brain, synapses are junctions between neurons, allowing brain cells to communicate with one another by exchanging chemical information in the form of various neurotransmitters, such as dopamine or serotonin.

Neuroscientists believe that one of the reasons why the human brain is so efficient has to do with the ability of synapses to simultaneously process and store information. In contrast, computers store information after it is processed, making them very slow by comparison.

The new hybrid system also employs electrochemistry to allow an array of artificial synapses to communicate with living cells as though they were just another neuron exchanging information with its neighbor.

“This paper really highlights the unique strength of the materials that we use in being able to interact with living matter,” said Alberto Salleo, professor of materials science and engineering at Stanford and co-senior author of the new study.

“The cells are happy sitting on the soft polymer. But the compatibility goes deeper: These materials work with the same molecules neurons use naturally.”

Salleo and colleagues placed living neuroendocrine cells from rats — which release the neurotransmitter dopamine — on top of one the electrodes of the artificial synapse. When neurotransmitters interact with the electrode, a chemical reaction takes place that produces ions, which travel across the synapse trench to the second electrode. The ions alter the conductive state of the electrode, resulting in a permanent change in the connection that simulates how learning occurs in nature.

“In a biological synapse, essentially everything is controlled by chemical interactions at the synaptic junction. Whenever the cells communicate with one another, they’re using chemistry,” said Scott Keene, a graduate student at Stanford and co-lead author of the paper. Being able to interact with the brain’s natural chemistry gives the device added utility.

For now, this is just a proof-of-concept. The researchers do not have any immediate plans or applications in mind for their device since the main focus of the research was to simply show that this is all possible. However, this work may one day lead to a new generation of brain-mimicking computers, brain-machine interfaces, medical devices, and novel research tools for neuroscience and drug discovery.

RelatedPosts

Why your brain doesn’t catch a cold
Eating green leafy vegetables keeps your brain strong
Psychedelic-like drug could fix the symptoms of stress without giving you hallucinations
Learning keeps your brain healthy

The findings appeared in the journal Nature Materials.

Tags: brainsynapse

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Home science

What side do cats prefer to sleep on? The left side, and there’s a good reason for that

byMihai Andrei
4 days ago
Close-up photo of a tiny wasp.
Animals

Wasp Mums Keep Remarkable Mental To-Do List For Multiple Nests Despite Tiny Brain

byRupendra Brahambhatt
6 days ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
3 weeks ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
1 month ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.