ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Studies

When the Gas Giants are streched beyond The Point Of No Return

Mihai AndreibyMihai Andrei
December 10, 2007 - Updated on June 11, 2023
in Space, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

NASA releases dazzling images of Jupiter’s Red Spot, makes them open for citizen scientists
Why does Jupiter lack a true ring structure?
NASA shares unique time-lapse of Jupiter’s South Pole
Venus might be a hellscape today because of Jupiter

gas giants
The quest for understanding planets and stars seems to be more intense than ever. Things we could not have imagined not years but months ago are proven valid today. The problem of really big planets has especially fascinated scientists for hundreds of years for numerous reasons.

A gas giant is basically a large planet that is not comprised of rock or other solid matter. Now, planetary scientists at UCL have identified the point at which a star causes the atmosphere of an orbiting gas giant to become critically unstable, as reported in this week’s Nature (December 6). These planets which are similar with Jupiter have atmospheres which are either stable and thin, or unstable and rapidly expanding. They are using 3d models to find out how they are.

Tommi Koskinen of UCL’s Physics & Astronomy Department is lead author of the paper and says: “We know that Jupiter has a thin, stable atmosphere and orbits the Sun at five Astronomical Units (AU) – or five times the distance between the Sun and the Earth. In contrast, we also know that closely orbiting exoplanets like HD209458b – which orbits about 100 times closer to its sun than Jupiter does – has a very expanded atmosphere which is boiling off into space. Our team wanted to find out at what point this change takes place, and how it happens. “Our paper shows that if you brought Jupiter inside the Earth’s orbit, to 0.16AU, it would remain Jupiter-like, with a stable atmosphere. But if you brought it just a little bit closer to the Sun, to 0.14AU, its atmosphere would suddenly start to expand, become unstable and escape. This dramatic change takes place because the cooling mechanism that we identified breaks down, leading to the atmosphere around the planet heating up uncontrollably.”

This gives us an important clue about how they evolve and this meaning that according to this study every such planet at a point in its life goes to a point where it can not return from. They form as an ice core out in the cold depths of space before migrating in towards their host star over a period of several million years. We have traveled a long way in a short amount of time when you think that just about 15 years ago we had not discovered an extrasolar planet.

Tags: gas giantsjupiter

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
3 months ago
News

Juice spacecraft detects life’s building blocks on Earth, prepares to do the same for Jupiter’s icy Moons

byJordan Strickler
11 months ago
Photo: USGS.
Geology

A beautiful map of the solar system’s largest moon

byTibi Puiu
12 months ago
Astronomy

Jupiter’s great red spot might not be the one discovered in the 17th century

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.