ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Agriculture

Farmer ants still struggle with undomesticated crops, study finds

Starving your crops might seem counterintuitive, but these ants have a pretty good reason for it.

Alexandru MicubyAlexandru Micu
September 5, 2016
in Agriculture, Animals, News, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new Panama Smithsonian Tropical Research Institute (STRI) finds that modern relatives of the first fungus-farming ants still haven’t domesticated their crops. The study draws a strong parallel between the difficulties these ants faced and early human farmers faced.

Image via pixadus.

Some time after the dinosaurs went extinct 60 million years ago, the ancestors of leaf-cutter ants decided it was time to settle down. Just like us, they traded hunting and gathering for a more secure source of food — agriculture. You can still see their legacy snaking in busy lines through the rainforest carrying bits and pieces of plants over their heads. All this material underpins a huge, almost industrial agricultural complex. But for all their hard work, the ants’ harvest is limited by a farmer’s worst nightmare — a wild crop.

A new study at the Smithsonian Tropical Research Institute (STRI) in Panama revealed that living relatives of the earliest fungus-farming ants still have not domesticated their crop, a challenge also faced by early human farmers.

Modern leaf-cutter ants and the fungus they grow can’t survive without each other. The fungus is so important to the ants that young queens take a bit of it from the home nest and the colony they establish revolves around the farms they set up from this tiny bit. The fungus, in turn, doesn’t have to waste energy producing spores to reproduce itself. But what if the fungus…wants to make spores?

“For this sort of tight mutual relationship to develop, the interests of the ants and the fungi have to be completely aligned, like when business partners agree on all the terms in a contract,” said Bill Wcislo, deputy director at the STRI and co-author of the new publication in the Proceedings of the National Academy of Sciences.

“We found that the selfish interests of more primitive ancestors of leaf-cutting ants are still not in line with the selfish interests of their fungal partner, so complete domestication hasn’t really happened yet.”

Humans harvest vegetables before they go to seed — at this stage, the plants start diverting most of their energy and nutrients towards producing seeds, thus limiting their value as foodstuffs. And just like us, ants want to make sure that the fungus puts as little energy as possible into growing spores so it will grow bigger and fatter. What ants want is for the fungus to grow hyphae, the thread-like protrusions which they can eat. But the crop has its own plan so the ants carefully starve it into doing what they want.

Marie Curie Post-Doctoral Fellow of Jacobus Boomsma’s lab at the University of Copenhagen Jonathan Shik and his team found in an STRI study of Mycocepurus smithii — an ancestor of the leaf cutters that has not yet domesticated its fungal crop — that the ants alter what they feed the fungus to limit its spore production. The ants carefully manage the protein and carbohydrate content of the fertilizer they use to control how many mushrooms their cultivars produce. When they fed it mulches rich in carbohydrates, the fungus can produce both hyphae and mushrooms. But carefully rationing the amount of protein it receives can prevent the fungi from making mushrooms.

The downside of this is that by starving their crops, the ants severely limit the output of their fungal cultivars.

RelatedPosts

Researchers Decode the Genome of a Fungus That Turns 80% of The Flies in Your Home Into Zombies
Ants craft tiny sponges to make it easier to carry food
Fungus turns frogs into sex zombies, but then kills off whole species
How many germs you can find in your home: about 9,000 different species

“The parallels between ant fungus farming and human agriculture are uncanny,” Shik said. “Human agriculture evolved in the past 10,000 years.”

“It took 30 million years of natural selection until the higher attine ants fully domesticated one of their fungal symbiont lineages. We think that finally resolved this farmer-crop conflict and removed constraints on increased productivity, producing the modern leaf-cutter ants 15 million years ago,” Boomsma said.

“In contrast, it took human farmers relatively little time to domesticate fruit crops and to select for seedless grapes, bananas and oranges.”

The full paper titled “Nutrition mediates the expression of cultivar–farmer conflict in a fungus-growing ant” has been published in the journal PNAS.

Tags: antsfarmingfungusLeaf-cutter

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Materials

This living fungus-based building material can repair itself over a month

byAlexandra Gerea
3 months ago
Biology

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

byTibi Puiu
3 months ago
Biology

Ants outperform humans at group puzzle-solving activity

byMihai Andrei
6 months ago
Biology

White noise seems to get fungus to grow faster and we’re not sure why

byMihai Andrei
9 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.