Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Diseases

Antibiotics of the future might come from the bottom of the oceans

Tibi Puiu by Tibi Puiu
January 30, 2013
in Diseases, Health, Studies

The advent of antibiotics has spared humanity of a great deal of suffering and has saved countless lives through the years. Infectious diseases do not bore too easily and have always put out a fight, though. The bad news is that they’re winning and as the battle rages on, more and more strains become resistant to drugs. The consequences are broad and dire, and this is why scientists today want to be one step ahead and prepare for tomorrow.

Two separate studies recently published by a research partnership called the Philippine Mollusk Symbiont International Cooperative Biodiversity Group discuss how the future’s new class of antibiotics might reside at the bottom of the oceans. Like the name implies, both studies were concentrated on mollusks, a phylum of invertebrates which includes such animals as snails, clams and squid. Many of these ocean animals have been living in harmony with their bacterial companions for millions of years, and it’s in these bacteria that the key to the future’s antibiotics might lie. Having passed the test of time, rending no side effects to their animal companions, these bacteria have already shown promising results.

Ocean bacteria might be key to tomorrow’s antibiotics

ship-worm The first study, published in the journal Proceedings of the National Academy of Sciences, the researchers tackled shipworms, but don’t let the name fool you too much. These mollusks have more to do with ships themselves than worms. Typically these are considered pests due to their ill-viewed habit of affixing themselves to the sides of wooden ships. Over time they feed on the wood, causing damage to the boat, which can be most unpleasant.

Then comes the question, however. How do these animals feed on wood? Wood is an extremely poor nutrient, far from being an ideal meal for a multicell organism, since it lacks proteins or nitrogen. Here’s the kicker though. The shipworm has a bacteria that converts the wood into a suitable food source where the animal can both live and feed. One such bacteria apparently also secretes a powerful antibiotic, which might hold great promise for combating human diseases.

“The reason why this line of research is so critical is because antibiotic resistance is a serious threat to human health,” said Margo Haygood, Ph.D., a member of the OHSU Institute of Environmental Health and a professor of science and engineering in the OHSU School of Medicine.

“Antibiotics have helped humans battle infectious diseases for over 70 years. However, the dangerous organisms these medications were designed to protect us against have adapted due to widespread use. Without a new class of improved antibiotics, older medications are becoming less and less effective and we need to locate new antibiotics to keep these diseases at bay. Bacteria that live in harmony with animals are a promising source. “

cone snail The second paper, published in journal Chemistry and Biology, looked at cone snails collected in the Philippine. Previously, only a few studies actually were made to determine whether or not bacteria associated with these mollusks might prove useful in drug development. Mostly, this is due to the fact that cone snails aren’t that welcoming to outside visitors, featuring thick shells and quite a nasty toxic venom why they aren’t too shy about using. Since they pose a sort of miniaturized defense arsenal, it was previously assumed that these animals do not require additional chemical defense, meaning there could be no interest in human medication in turn. This was a false assumption.

Scientists proved that bacteria associated with cone snails actually produce a chemical which is neuroactive, impacting nerve cells (neurons) in the brain. Based on initial findings alone, the bacteria is already considered promising as a viable candidate for a highly powerful painkiller.

“Mollusks with external shells, like the cone snail, were previously overlooked in the search for new antibiotics and other medications,” said, Eric Schmidt, Ph.D., a biochemist at the university of Utah and lead author of the article.

“This discovery tells us that these animals also produce compounds worth studying. It’s hoped that these studies may also provide us with valuable knowledge that will help us combat disease.”

Was this helpful?


Thanks for your feedback!

Related posts:
  1. DARPA wants to store drones at the bottom of the world’s oceans
  2. Worth more in the oceans: fish save billions of dollars each year by storing CO2 in the oceans
  3. Half of all water in the oceans may have come from ancient asteroid collisions
  4. Antibiotics – the end of an era?
  5. Study reveals how ants produce antibiotics
Tags: antibioticcone snailinvertebratemollusksshipwormsnails

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW