ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Inventions

Ultrafast quantum computers one step closer

Mihai AndreibyMihai Andrei
February 10, 2011 - Updated on April 5, 2011
in Inventions, Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Physicists devise programmable optical quantum computer
China takes quantum supremacy lead
Atomic ions finally set the stage for an all-purpose, programmable Quantum Computer
What does quantum cryptography mean for cybersecurity

Researchers from the Oxford University have outdone themselves, successfully generating 10 billion bits of quantum entanglement in silicon for the first time, which represents a significant step towards an ultrafast quantum computer, because entanglement is the key element that should make quantum computers way more powerful than “traditional” computers.

In order to achieve this, the Oxford scientists used low temperatures and high magnetic fields between the electron and the nucleus of an atom of phosphorus which was embedded in a purified silicone crystal. The electron and the nucleus act similar to a tiny magnet, or “spin“, each of which can store and transmit information. If controlled, these spins can interact with each other and be coaxed into an entanglement state, a state that can in no way be mimicked by a conventional computer.

‘The key to generating entanglement was to first align all the spins by using high magnetic fields and low temperatures,’ said Stephanie Simmons of Oxford University’s Department of Materials, first author of the report. ‘Once this has been achieved, the spins can be made to interact with each other using carefully timed microwave and radiofrequency pulses in order to create the entanglement, and then prove that it has been made.’

The importance of the work cannot be underlined enough, as it’s this kind of studies that will lead to tomorrow’s computers, but creating true entanglement involves crossing the border between day to day reality and the strange uncertainties that take place in the quantum world.

Dr Morton said: ‘At high temperatures there is simply a 50/50 mixture of spins pointing in different directions but, under the right conditions, all the spins can be made to point in two opposing directions at the same time. Achieving this was critical to the generation of spin entanglement.’

Try to wrap your mind around that.

Tags: entanglementquantum computerquantum processorqubit

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

byTibi Puiu
2 months ago
News

Scientists Are Building a Quantum Computer With Chips Made out of Glass

byAnthony King
2 months ago
photo (c) John Cairns
Future

Scientists Just Linked Two Quantum Computers With “Quantum Teleportation” for the First Time and It Changes Everything

byTibi Puiu
7 months ago
Future

What does quantum cryptography mean for cybersecurity

byAlexandra Gerea
3 years ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.