ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Machine learning used to predict crimes before they happen – Minority Report style

The word on every tech executive's mouth today is data. Curse or blessing, there's so much data lying around - with about 2.5 quintillion bytes of data added each day - that it's become increasingly difficult to make sense of it in a meaningful way. There's a solution to the big data problem, though: machine learning algorithms that get fed countless variables and spot patterns otherwise oblivious to humans. Researchers have already made use of machine learning to solve challenges in medicine, cosmology and, most recently, crime. Tech giant Hitachi, for instance, developed a machine learning interface reminiscent of Philip K. Dick's Minority Report which can predict when, where and possibly who might commit a crime before it happens.

Tibi PuiubyTibi Puiu
September 30, 2015
in News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

The word on every tech executive’s mouth today is data. Curse or blessing, there’s so much data lying around – with about 2.5 quintillion bytes of data added each day – that it’s become increasingly difficult to make sense of it in a meaningful way. There’s a solution to the big data problem, though: machine learning algorithms that get fed countless variables and spot patterns otherwise oblivious to humans. Researchers have already made use of machine learning to solve challenges in medicine, cosmology and, most recently, crime. Tech giant Hitachi, for instance, developed a machine learning interface reminiscent of Philip K. Dick’s Minority Report that can predict when, where and possibly who might commit a crime before it happens.

Machines listening from crime

Screenshot from the movie Minority Report.
Screenshot from the movie Minority Report.

It’s called Visualization Predictive Crime Analytics (PCA) and while it hasn’t been tested in the field yet, Hitachi claims that it works by gobbling immense amounts of data from key sensors layered across a city (like those that listen for gun shots), weather reports and social media to predict where crime is going to happen next. “A human just can’t handle when you get to the tens or hundreds of variables that could impact crime,” says Darrin Lipscomb who is directly involved in the project, “like weather, social media, proximity to schools, Metro [subway] stations, gunshot sensors, 911 calls.”

Real footage of the Hitachi crime predicting interface which officers might use. Image: Hitachi
Real footage of the Hitachi crime predicting interface which officers might use. Image: Hitachi

Police nowadays use all sorts of gimmicks to either rapidly intervene when a crime is taking place or take cues and sniff leads that might help them avert one. For instance, police officers might use informers, scour social media for gang altercations or draw a map of thefts to predict when the next one might take place. This is a cumbersome process and officers are only human after all. They will surely miss some valuable hints a computer might easily draw out. Of course, the reverse is also true, as is often the case in fact, but if we’re talking about volume – predicting thousands of possible felonies every single day in a big city – the deep learning machine will beat even the most astute detective.

PCA is particularly effective, supposedly, at scouring social media which Hitachi says improves accuracy by 15%. The company used a natural language processing algorithm to teach their machines how to understand colloquial text or speech posted on facebook or twitter. It knows, for instance, how to pull out geographical information and tell if a drug deal might take place in a neighborhood.

Officers would use PCA’s interface – quite reminiscent of Minority Report, again – to see which areas are more vulnerable. A colored map shows where cameras and sensors are placed in a neighborhood and alerts the officer on duty if there’s a chance a crime might take place there, be it a robbery or a gang brawl. Dispatch would then send officers in the area to intervene or possibly deter would-be felons from engaging in criminal activity.

PCA provides a highly visual interface, with color-coded maps indicating the intensity of various crime indicator
PCA provides a highly visual interface, with color-coded maps indicating the intensity of various crime indicators. Image: Hitachi

In all event, this is not evidence of precognition. The platform just returns vulnerable neighborhoods and alerts officers of a would-be crime. You might have heard about New York City’s stop-and-frisk practice, where suspicious people are searched for guns or drugs. PCA works fundamentally different since it actually offers officers something to start with – it at least provides a more focused leverage. “I don’t have to implement stop-and-frisk. I can use data and intelligence and software to really augment what police are doing,” Lipscomb says. Of course, this raises the question: won’t this lead to innocent people being targeted on mere suspicion fed by a computer? Well, just look at stop-and-frisk. More than 85% of those searched on New York’s streets are either Latino or African-American. Even if you account for differences ethnic crime rates, stop-and-frisk is clearly biased. The alternative sounds a lot better since police might actually know who to target.

Hitachi’s crime prediction tool will be tested in six large US cities soon, which Hitachi has declined to spell. The trials will be double-blinded, meaning police will go on business as usual, while the machine will run in the background. Then Hitachi will compare what crimes the police report with the crimes the machine predicted might have happened. If the two overlap beyond a statistical threshold, then you have a winner.

RelatedPosts

So what happens when a robot files for a patent?
MIT machine makes videos out of still images to predict what happens next
AI Designs Computer Chips We Can’t Understand — But They Work Really Well
Excitement, not profit, drives young burglars to crime
Tags: crimedeep learningmachine learning

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

History

AI Would Obliterate the Nazi’s WWII Enigma Code in Minutes—Here’s Why That Matters Today

byTudor Tarita
5 days ago
Future

This Chip Trains AI Using Only Light — And It’s a Game Changer

byMihai Andrei
1 week ago
An image of the 3D printed nano lattice (left) and a cell of the lattice resting on a bubble (right)
Materials

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

byRupendra Brahambhatt
2 weeks ago
blocky image of minecraft
Future

An AI Called Dreamer Learned to Mine Diamonds in Minecraft — Without Being Taught

byTudor Tarita
1 month ago

Recent news

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

May 15, 2025

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

May 15, 2025

Scientists Found ‘Anti Spicy’ Compounds That Make Hot Peppers Taste Milder

May 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.