ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

New anti-fragile plastic becomes stronger every time it’s stressed

Tibi PuiubyTibi Puiu
September 2, 2013
in Chemistry, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Say hello to drop-proof smartphones and whole new generation of plastic products that will be far more durable and strong than their present counterparts. Scientists at Duke University recently unveiled their most recent, stunning work: a new type of polymer that seems to contradict common knowledge and re-arranges its chemical structure each time its under stress, say a mechanical shock. The test of time is in the plastic’s favor as every time the material suffers a mechanical deformation, it becomes stronger.

Plastics are the most widely used class of materials, and there’s no secret why: they’re durable, light, easy to manufacture and they last a long time (they’re lengthy half-life is also an environmental hazard, however) . Their hardness comes in various degrees, however, but what’s certain is that most of us have come to know that plastics aren’t the strongest materials. Bashed house appliances and just about any dropped plastic-based item serve as testament to this claim.

The Duke-made plastic is different. Like most plastics, the polymer is mostly made of carbon. The key difference is that these carbon atoms are arranged in a series of triangles extending down in long chains with two bromine atoms at one point. It’s this unique structure that allows the novel plastic to exhibit its unique, counter-intuitive properties.

chemical-bond

When the plastic is tugged or comes under shock, the polymer chains tear on one side, as opposed to typical plastic polymers who do not experience the same uniform deformation leading to structural failure (breaks, cracks). The shearing force breaks the triangle into a longer chain, which also frees up bonding sites at the bromine locations for a second molecule to come in. That second molecule is a carboxylate that cross-links multiple chains and increases the material’s strength at the site of damage. This happens every time the material comes under deformation.

The material was put to the test on a larger scale after the polymer was introduced into an extruder, which forced the plastic into a mold. Before being placed intro the extruder the material was pliable, but after being molded its hardness increased significantly to the point it become very stiff. Microscopic analysis subsequently showed an increased in hardness 200-fold after the extrusion process.

It’s unclear when the polymer might be introduced in commercial applications, still the prospects are amazing.

RelatedPosts

New polymer coating technique leads to first-ever completely plastic solar cell and makes way for even thinner electronics
Atomic structure of bone deciphered for the first time
Shops in Japan begin charging fees for plastic shopping bags
Australian researchers develop harder-than-diamond artificial diamond

Findings appeared in Nature. [via ExtremeTech]

 

Tags: carbonmaterial scienceplasticpolymer

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

byTudor Tarita
2 weeks ago
Environmental Issues

Glass bottles shed up to 50 times more microplastics into drinks than plastic or cans — and the paint on the cap may be to blame

byTudor Tarita
4 weeks ago
Animals

This Bear Lived Two Years With a Barrel Lid Stuck on Its Neck Before Finally Being Freed

byTibi Puiu
1 month ago
Environment

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

byTudor Tarita
1 month ago

Recent news

Researchers Just Read a 100-Year-Old Buddhist Scroll Without Opening It

July 29, 2025
aqueduct in greece

Athens Is Tapping a 2,000-Year-Old Roman Aqueduct To Help Survive a Megadrought

July 29, 2025

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

July 29, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.