ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

New class of transparent metal films could make smartphones a whole lot cheaper

Researchers have discovered a new material that's both transparent and electrically conductive that might make smartphones, TVs, smart windows and solar cells a lot cheaper, and maybe even more efficient.

Tibi PuiubyTibi Puiu
December 16, 2015
in Chemistry, News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have discovered a new material that’s both transparent and electrically conductive that might make smartphones, TVs, smart windows and solar cells a lot cheaper, and maybe even more efficient.

zme science on smartphone

Most touch screens are made from a transparent metal called indium tin oxide (ITO). But while the cost of processors and memory in smartphones has gone down year after year, indium price hikes jumped the cost of touch screens with each generation. Today, for a medium-priced phone the cost of the touch screen makes up 40% of the production value.

Pennsylvania State University researchers led by Roman Engel-Herbert investigated various alternatives to indium compounds. Previously, little progress was made elsewhere by other groups who tried to replicate ITO’s seemingly perfect combination of optical transparency, electrical conductivity and ease of fabrication.

The researchers employed a different strategy, however, and worked with an uncoventional class of materials called correlated metals in which the electrons flow like a liquid. In most metals, like copper, gold, aluminum or silver, the electrons flow like a gas.

“We are trying to make metals transparent by changing the effective mass of their electrons,” Engel-Herbert said. “We are doing this by choosing materials in which the electrostatic interaction between negatively charged electrons is very large compared to their kinetic energy. As a result of this strong electron correlation effect, electrons ‘feel’ each other and behave like a liquid rather than a gas of non-interacting particles. This electron liquid is still highly conductive, but when you shine light on it, it becomes less reflective, thus much more transparent.”

 A figure showing the crystal structure of strontium vanadate(orange) and calcium vanadate (blue). The red dots are oxygen atoms arranged in 8 octohedra surrounding a single strontium or calcium atom. Vanadium atoms can be seen inside each octahedron. Image: Lei Zhang / Penn Stat

A figure showing the crystal structure of strontium vanadate(orange) and calcium vanadate (blue). The red dots are oxygen atoms arranged in 8 octohedra surrounding a single strontium or calcium atom. Vanadium atoms can be seen inside each octahedron.
Image: Lei Zhang / Penn Stat

With the help of  Professor Karin Rabe of Rutgers University, the researchers devised a mathematical model that rendered the optimal design for transparent conductors in the form of a correlated metal. Eventually, they manufactured 10nanometer thick films made from strontium vanadate and calcium vanadate. When tested, these “worked really well compared to ITO,” said Engel-Herbert.

Samples of the correlated metals strontium vanadate (two squares on left) and calcium vanadate (two squares on right) with two uncoated squares in center. Image: Lei Zhang / Penn State
Samples of the correlated metals strontium vanadate (two squares on left) and calcium vanadate (two squares on right) with two uncoated squares in center.
Image: Lei Zhang / Penn State

Indium is priced at $750/kg, while  strontium vanadate and calcium vanadate sell for less than $25/kg each.

RelatedPosts

Your smartphone will be able to tell if you have blood parasites
Your smartphone is a parasite, according to evolution
Researchers create smartphone app that can diagnose depression from facial features
Portable smartphone laboratory can detect cancer with 99% accuracy

The researchers from Penn State have found a great alternative to ITO touch screens. It remains now to be seen whether these can be manufactured with the same ease. From what they gather at the moment, the researchers say “there is no reason that strontium vanadate could not replace ITO in the same equipment currently used in industry.” If so, then smartphones could be made really, really cheap. Same goes for any device that requires a touchscreen display.

Engel-Herbert says their exotic transparent metals could also be used in solar cells. Since 2009,  a new type of solar cells made from perovskite — a mineral able to transport solar energy and convert it into electricity — has been catching everybody’s eyes in the industry. In only a couple years of research, the  rated efficiency of such solar cells has soared from 3.8% to 19.3%, a pace of improvement unmatched by any other solar technology.Strontium vanadate, also a perovskite, has a compatible structure that makes this an interesting possibility for future inexpensive, high-efficiency solar cells.

Findings appeared in Nature.

 

Tags: indium tin oxidesmartphone

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Your smartphone is a parasite, according to evolution

byRachael L. Brown
2 weeks ago
Health

Doctors Warn That Bringing Your Phone to the Bathroom Could Backfire in a Painful Way

byTudor Tarita
3 weeks ago
News

Finland Just Banned Smartphones in Schools

byMihai Andrei
1 month ago
News

People Who Blocked Their Smartphone’s Internet for Two Weeks Report Big Mood Boost

byTibi Puiu
4 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.