Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

Nano-enhanced textiles could lead us to a brighter future with no laundry

Tired of laundry day? Pioneering nano research into self-cleaning textiles could soon make cleaning your clothes as easy as hanging them out on a sunny day.

Alexandru Micu by Alexandru Micu
February 15, 2019
in Chemistry, Home science, Materials, News, Physics, Research, Science

Tired of laundry day? Pioneering nano research into self-cleaning textiles could soon make cleaning your clothes as easy as hanging them out on a sunny day.

Cotton textile fibers and nanostructures. Image magnified 200 times.
Image credits RMIT University

A team from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at the RMIT University in Melbourne, Australia, have developed a cheap and efficient method of incorporating nanostructures which degrade organic when exposed to light directly into textile fibers. Thier new production technology could pave the way for clothes that can shrug off grime and slime when put under a light bulb or worn out in the sun.

When exposed to light, the nanostructures release so-called hot electrons — particles that gain very high kinetic energy after being accelerated by a strong, high intensity electrical field within a semiconductor. These electrons then consume their energy to degrade organic matter stuck in the weave around them. The researchers worked with copper and silver-based compounds to create their nanostructures, as these are known for their ability to absorb visible wavelength intervals of light.

The color red indicates the presence of silver nanoparticles. The image shows a full coverage of the material with nanostructures grown by the RMIT team. Image magnified 200 times.
Image credits RMIT University

Self-cleaning clothes aren’t a new concept. But the RMIT team aimed to develop a method that would allow active structures to be permanently attached to the fibers and be usable on an industrial scale at the same time. Their novel solution was to grow them directly onto the materials by dipping these into a series of chemical solutions. The whole process takes roughly 30 minutes and results in extremely stable nanostructures.

During laboratory tests, it took less than six minutes of light exposure for the nano-enhanced fabrics to spontaneously clean themselves.

Nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times.
Image credits RMIT University

“The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,” said Lead researcher Dr Rajesh Ramanathan.

Dr Ramanathan says that the process has a variety of possible applications in catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and can be easily scaled up to industrial levels.

“Our next step will be to test our nano-enhanced textiles with organic compounds that could be more relevant to consumers, to see how quickly they can handle common stains like tomato sauce or wine.”

“There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textiles,” Ramanathan concluded.

The full paper, titled “Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis” has been published online in the journal Advanced Materials Interfaces and is available here.

 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Rats dream of getting to a brighter future
  2. Self-healing textiles means you don’t have to throw away your torn jeans — just add water
  3. Electronic textiles could turn clothes into wearable electronics
  4. Detoxification of Air Pollutants, enhanced by Broccoli Sprout Beverage, Chinese clinical trial reveals
  5. Enhanced vision, and not limbs, may have prompted fish to become the first land animals
Tags: cleaningClothesFibersmaterialsSelfTextiles

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW